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Executive Summary

This report summarizes our derivations of analytical expressions for the frequencies and damping constants

for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in

microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the

surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters

characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects fronl the surface

advection and diffusion of surfactants, and tile Gibbs elasticity are all considered and analyzed to determine

the relative importance of each contribution.

Supt)h_menting the analytical treatment for small-amplitude oscillations, a numeri(:al boundary integral

equation formulation is developed for the study of large-amplitude axisymmetric oscillations of a drop in

vacuum. The boundary integral formulation is an extension of classical potential flow theory and approx-

imately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects

resulting from an insoluble surfactant contaminating the interface.
Theoretical and numerical results are presented for four distinct cases. These range from the case when the

effects of the surfactants are "negligible" to "large" when compared to the viscous effects in the bulk phases.

The feasibility of the non-contact measurenmnt of the surface parameters, using experimental observations
for the oscillation frequencies and damping constants of drops and bubbles, is discussed.
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Chapter 1

Introduction

The dynamics of the shape deformations of drops and bubbles are important in a wide variety of prac-

t.ical applications including heat-transfer [7], chemical engineering [16], multiphase flow [24], and nuclear

physics [13]. Any system in which the surface area to volume ratios are high may be greatly influenced

by the presence of surfactants. Surfactants are long molecules with separated hydrophilic and hydrophobic

segments that preferentially adsorb to an interface and give it viscoelastic properties. For a Newtonian inter-
facial fluid these viscoelastic properties are characterized by surface tension, a Gibbs elasticity, and surface

shear and dilatational viscosities. Since the dynamics of drops and bubbles depend on these viscoelastic

properties, experiments have been proposed for the non-contact measurement of these properties through
the observations of forced and freely oscillating drops and bubbles [48, 20, 9, 25, 15]. The present work aims

to determine analytical expressions for the dependence of the frequency and damping constants on these

viscoelastic interracial properties, needed for extracting their values fl'om the experimental data.

The study of the small-amplitude shape oscillations of drops and bubbles has a long history. By using

a normal-mode analysis to separate the time variable, Rayleigh [39] determined the snmll-amplitud(_ linear

frequencies of an inviscid drop oscillating in vacuum. This analysis was generalized to treat tile case of an

inviscid drop submerged in an inviscid medium by Lamb [23], who also used the inviscid velocity solutions

to estimate the rate of damping of a weakly viscous drop in vacuum or a gas bubble immersed in a weakly
viscous medium. A similar dissipation estimate was obtained for arbitrary viscosities by Reid [40] for a

drop in a vacuum or low density gas, and by Valentine et al. [53] for a drop submerged in a fluid medium.

Miller and Scriven [29] used a normal-mode analysis of the linearized Navier-Stokes equations to identify the

primary role of boundary layer dissipation on the frequency shift and damping rate for the weakly viscous
drop and medium system. Their formulation also included viscoelastic surface properties, but they limited

their analysis to the case of free and inextensible interfaces. Prosperetti [37, 38] used a more general technique

based on Laplace transforms to study the transient regimes of a weakly viscous drop and inedium system
and showed that the normal-mode results are recovered in the asymptotic limit for long times. Higher-order

corrections to Miller and Scriven's normal-mode analysis have been obtained by Marston [28] and Asaki and

Marston [6] for free and acoustically forced shape oscillations of a weakly viscous drop and medium system.

Lu and Apfel [25] have extended Miller and Scriven's normal-mode analysis to include the effects of a soluble
surfaetant ill the outer mediuln. A similar normal-mode analysis has been used by Tian et al. [45] to analyze

the effects of a soluble surfactant on a drop oscillating in vacuum in the quadrupole mode.

Due to its relative complexity, the large-amplitude analysis of drops and bubbles has been limited to

inviscid or numerical models. Tsamapoulos and Brown [51, 52] and Natarajan and Brown [33, 34] have used

inviscid models to study nonlinear shape oscillations and mode coupling. Foote [19] and Alonzo [2] analyzed

the nonlinear oscillations of a viscous drop in vacuum using the marker-and-cell numerical method. The large-

amplitude oscillations of a viscous drop has also been studied by Basaran [7] using a finite-element method.

The boundary integral numerical method for potential flow has been used by Lundgren and Mansour [26]

and Shi and Apfel [44] to sinmlate high Reynolds number drop oscillations, where weak viscous effects were
included in the formulation by a modification of the normal stress boundary condition. The weakly viscous

analysis using the boundary integral numerical method has been extended for the case of charged drop
forced in an electric field by Feng and Beard [18] and an acoustically forced drop incorporating the effects



of constantsurfaceviscoelasticpropertiesbyChenet al. [15].

The shape oscillation experiments of an acoustically levitated drop or bubble began with Marston and

Apfel [27]. Trinh et al. [46, 47, 48] have also used acoustic forcing to study the small and large-amplitude

shape oscillations of a neutrally buoyant drop submerged in an outer medium. Asaki and Marston [6, 5] have

analyzed acoustically positioned gas bubbles oscillating in the presence of insoluble and soluble surfactants

and Tlinh et al. [49] have studied the combined effects of acoustic and electric field forcing on charged drops

in air. Recently Apfel et al. [3] have studied large-amplitude oscillations for a surfactant contaminated drop

in air in microgravity.

Tile present work considers high Reynolds number shape oscillations of a drop and medium system and
extends the knowledge of small-amplitude shape oscillations in the presence of surfactants with the derivation

and analysis of a total mechanical energy equation for the system. The analysis of this total mechanical energy

equation with matched asymptotic expansion techniques generalizes the energy approaches of Lamb [23] and

Hsu and Apfel [20] for the deterinination of tile oscillation frequency and damping constants for the system
and provides physical insight into the origin and significance of resulting terms. The understanding of large-

amplitude shape oscillations of a drop in vacuum is also improved in the present work with the development

and analysis of an efficient boundary integral numerical method for high Reynolds number shape oscillations

that incorporates, in an approximate way, the viscous effects in the bulk fluid and surface viscoelastic effects

arising from the presence of an insoluble surfactant at the interface.



Chapter 2

Theor Y

2.1 Motivating example: An oscillating flat plate

Figure 2.1 shows a fiat plate of mass m submerged in a fluid of density p and viscosity # and attached to
a wall by a spring of stiffness k. The equations and boundary conditions describing the one-dimensional

time-dependent displacement of the plate x(t) front equilibrium and fluid velocity u(y, t) are given by

G_U

,nS}(t) + kx(t) = Ap_:-(O, t),
c,y

(2.1)

• (0) = *o, _(0) = o, (2.2)

and
01/, . 02U . ,

p_-d(y, t) = p_y,, (y, t) , (2.3)

,,(y,o) = o, _(o,t) = _(t), _(o_,t) = o. (2.4)

Gravity and end effects have been neglected. Equation (2.2) corresponds to the plate being released from
an initial displacement Xo. The right-hand side of (2.1) represents the total viscous force on the plate with

total surface area A. The above equations and boundary conditions may be nondimensionalized with the

time scale COo1 = (k/m) 1/'2 and the length scale xo. The distance normal to the plate is scaled with the
Stokes' boundary layer thickness (p/pWo) 1/_ and the nondimensional form of the equations and boundary
conditions are

a) b)

/

/ k

/----_
/

/

Y

m

I . xltl (

Figure 2.1: a) Schematic of oscillating plate system, b) Stokes' boundary layers above plate.



_'.(t)+ -_:(0= _=-(o,t),
oy

(2.5)

x(0) = 1, i.(0) = 0, (2.6)

and

(_2/t • .

_(_,t) = 0_fi(y,t), (2.7)

_(y,0) = 0, _(0,t) = x(t), _(_,t) = 0. (2.8)

Equations (2.5-2.8) contain the single parameter

p.4,{, I291
6 = m V P coo '

which may be interpreted as the ratio of the mass of the fluid in the boundary layer to the mass of the plate.

In the following sections the motion of the plate x(t) when e << 1 is analyzed using two methods.

Comparisons are made with shape oscillations of the drop/medimn system.

2.1.1 Exact solution using Laplace transforms

Equations (2.5-2.8) may be solved exactly using Laplace transforms in the time variable. The Laplace
transform is defined such that

/j_(s) = £{x(t)} = x(t)c-Sfdt. (2.10)

Equations (2.5-2.8) and (2.10) give the solutions for the plate and fluid motion in transform space as

s+_vq (2.11)
• (s c) = (l+s 2)+csx/-s

_(y, s;c) = (s_- 1)e-T_ . (2.12)

When 6 = O, the motions of the plate and fluid are time harmonic with the fluid motion above the plate

corresponding to Stokes' 2nd Problem:

x(t) = £-' {Z(s; 0)} = cos(t) (2.13)

u(y,t) = £-' {g(y,s;O)} = e-u/_/Scos(t- ylx/2). (2.14)

If c > 0, the time-dependent motion of the plate may be expressed in terms of an inverse Laplace transform

1 [ c+i_ (s + ev/S)e _t ds• (t) = z;-l{_(s;e)} - 2_i___ (l+s_)+esv_
(2.15)

and evaluated in the complex s-plane using residue theory. See Figure 2.2 for a description of the integration

contour. Note that for small c, the poles of the integrand in (2.15) are shifted fl-om +i by terms of O(e)

which are readily calculated. With a total solution of the form x(t) = Xsp(t) + Xb_(t), the leading-order

contribution from the two simple poles is

Xsp(t) = e -_'/_ cos[(1 - _12V_)t] + O(ee-_t). (2.16)

Here X_p(t) is an exponentially damped time harmonic oscillation with a fl'equency slightly shifted from

unity. The leading-oder contribution from the branch cut

-___ef_ x/Te -_, dr (2.17)
Xbr(t)

71" go (1 -it- r2) 2 -[- £2y 3

--c 1
as t _ oc; c _ 0. (2,18)

2V_ t3/2



3(s)
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_(s)

Figure 2.2: Contours around two simple poles and a branch cut in the complex s-plane.

Here Xbr(t) provides a small correction that decays algebraically for long times. Its contribution dominates

that from the simple poles for long times, but by that time the motion of the plate is negligibly small.
Similar behavior has been seen in the analysis of the shape oscillations of drops and bubbles using Laplace

transforms. Prosperetti [37, 38] has shown that the time dependent amplitude of the shape oscillations of

drop/medium system is composed of a discrete spectrum of exponentially decaying functions and a small

continuous spectrum. Roberts and Wu [41] have shown that the contiImous spectrum for the shape oscilla-

tions of a bubble has an algebraic decay and therefore dominates the total solution for long times. Each of
these treatments contains a level of analysis that is impractical when applied to the much more complicated

case of the shape oscillations of drops and bubbles when surfactants are present. The following section

outlines an averaging method which allows for the calculation of the leading order solutions in a simple way.

2.1.2 Approximate solution using an averaging method

The analysis using the averaging method [21] begins with the derivation of a total mechanical energy equation
for the system. For the plate and fluid system this involves nmltiplying the plate equation (2.5) by i'(t) and

the fluid equation (2.7) by u(y, t) and integrating over y to yield

+ = exw-(O,t) (2.19)

and

f0 '_' ?22 f0 ;_' 02_ttd _ dy = dy

fo= -_N (°'t) - \or]
(2.20)

These two equations may now be combined to form the total mechanical energy equation for the system

-_ +¢ _ dy + = -_ \ Oy ]
(2.21)

The left-hand side of (2.21) is the time rate of change of the total energy of the system, which consists of the

kinetic energy of the plate and fluid and the potential energy in the spring. The right-hand side of (2.21)

is the the total viscous dissipation in the fluid. For e = 0, this equation shows that. the total energy in the

system is conserved.

The averaging method uses the time-periodic solutions of the plate and fluid to find the time-average

of the quantities of kinetic energy, potential energy, and dissipation rate. An energy equation is then



constructedwhichyieldstermswithequivalenttimeaverages.Thisnewenergyequationis thensimplified
toformalinearoscillatorequationthat capturestheleadingorderbehaviorof theplate.Thisprocedureis
demonstratedbelow.

Supposeingeneralthat2(t) = N{Uea } and u(y, t) = ,_{U exp[-(1 + i)y/x/_+ it]}, where g is a complex

amplitude. (For the particular boundary conditions above U = 1.) It is easily shown that

u2 1 iui2 (2.22)-fay = 47 =

<fo'_(OU_2dg\ 1 _2\Oy] "/- 2x/2 IUI2 ={_}" (2.23)

Here the angular brackets {} denote

terms in (2.21) with terms involving

time average, yields

Taking the time derivative of the left-hand side of (2.24)

oscillator equation
6" .. C .

(l+_)x+_x+x=0,

which contains added mass and damping terms. The leading order solution is

the time average over one period of oscillation. Replacing the fluid

J: on the right-hand sides of (2.22) and (2.23), which have tile same

22

= -c_. (2.24)

and dividing through by 2(t) gives the following

(2.25)

x(t) = e-_t/2'/Scos[(1 - e/2v_)t] + O(e2). (2.26)

Comparing equations (2.16) to (2.26) shows that the averaging method captures the leading order contribu-
tions to the time dependent nlotion of the plate, but fails to capture the additional (,9(c) corrections from

tile branch cut.

2.2 Drop oscillations: equations and boundary conditions

Returning to the problem of drop oscillations, consider a liquid drop of density p and viscosity p suspended

in an infinite fluid medium of density fi and viscosity fi, in tile absence of gravity. Both fluids are assumed to

be inconlpressible and Newtonia.n. The continuity and momentum equations in each phase take the forms

Dv
W.v=0, p-_- =V-II forx• V,,_(t), (2.27)

^Dfi
$7. + = 0, P-D--/= V. I_I for x • I;%_(t). (2.28)

Here v and _', respectively, refer to the drop and medium velocity fields, 14,_(t) and (",,,(t) are the material

volumes of the drop and mediunl, and the stress tensors H and I:I are given by

1
II = -pI + 2pE, E = _[(Vv) + (Vv)T], (2.29)

1
1:I = -15I + 2fi1_, I_ = _[(V,_) + (V'_)T]. (2.30)

In (2.29) and (2.30), p and i5 represent the pressures in the two fluids, I is the isotropic unit tensor, and E

and I_ are the symmetric and traceless rate-of-strain tensors.

These field equations need to be supplemented by boundary conditions at infinity and at the material

interface Sin(t) between the drop and medimn. At infinity, the velocity field vanishes and the pressure tends
to a constant value. The interface is assumed to be covered with surfactants and therefore possesses its own



rheologicalproperties,whichmaybecharacterizedby thesurfacestresstensorIIs [16].Theno-slipand
stressbalanceboundaryconditionsat theinterfacethusassumetherespectiveforms[16]

v = _" } for x CS,,_(t). (2.31)fi.(ii-n) = -%.n,

The velocity of the interface is equal t.o the fluid velocity in the drop or medium evaluated at S,,_(t). For

convenience, this velocity is subsequently denoted by v. The surface stress tensor is also assumed to be
"Newtonian" and defined by a Boussinesq-Scriven constitutive relationship of the form [16, 31, 43]

IIs = als + 2psEs + _sls(Vs -v). (2.32)

Here a, #,, and t%, respectively, refer to interracial tension, surface shear viscosity, and surface dilatational

viscosity. Also, Is = I - tiff is the surface unit tensor and fl is a unit vector normal to the interface pointing

into the surrounding fluid medium. V, = I,. V is the surface gradient, and Es is the symmetric and traceless

surface rate-of-strain tensor defined by

Es = _[(V,v). Is + I,. (VsV) T] - 2Is(Vs • V). (2.33)

In this work Ps and ^:, are taken to be constant. The surface tension a, however, depends on local

surfactant concentration F. For small-amplitude drop oscillations the concentration of surfactants F is

assumed to vary only slightly from the equilibrium concentration F,_,t and tile surface tension is approximated

as a linearly decreasing flmction of the surfactant concentration [16]

es

a(r) = a,.q - _(F - F,,q). (2.34)

Here _q is a constant equilibrium surface tension and e_ is the Gibbs elasticity.
The surfactant transport equation for an insoluble surfactant is given by [31]

0r
0_- + Vs. (vr) = DsVs 2 F, (2.35)

where D, is tile surface diffusivity of surfactants and v is the velocity of the interface. The surfactant

transport equation is coupled to the equations governing the bulk fluid motions through (2.34).

2.3 The total mechanical energy equation

The total mechanical energy equation is obtained by dot multiplying the momentum equation in (2.27)

by v, the momentum equation in (2.28) by _', integrating over the respective material volumes I,_,-_(t) and

I"_,_(t), and adding the resulting equations. With the aid of the bulk Reynolds Transport and Divergence
Theorems [4, 31], the no-slip boundary condition (2.31), and the incompressibility conditions (2.27) and

(2.28), the following equation is obtained

d{/I 1 ,--dt % _plv " dV + jl; _/51"_12dV} =

- f% 2#(E : E)dV - _;,,

-_ ft. (l:I - H) • vdS.
m

2 (E: E)dV

(2.36)

The integrand in the last term on tile right-hand side of (2.36) may be sinlplified using the stress balance

boundary condition (2.31):

fl.(n-n).v =

= : Vsv- vs.(re.v)

= 2ps(E, : E_) + t%(V_.v) 2

+a(V_. v) - %. (n_.v), (2.37)



sothat

_tt{L,_ _Plvl2dV+ £ _l*12dV} =

J_

/" 2ps(Es : Es)dS- [. _s(Vs'v) 2dS
m m

- v)cls- £mvs-(m,v)as. (2.3s)
The last term on the right-hand side of this expression is zero by the the Surface Divergence Theorem [31], and

the second to last term may be simplified using (2.34) and tile Surface Reynolds Transport Theorem [31].

The general forms of the Surface Reynolds Transport and Surface Divergence Theorems are given in the

Appendix A. The final form for the total mechanical energy equation is

d

- _.{.,2 (E: _,{;,,2 (E e)d "

m J_ m

+ [ e, (r- r_q)(V,.v)dS. (2.39)
J.s.,n req

The terms on the left-hand side represent the time rate of change of the total kinetic energies in each phase

and the potential energy. The first two terms on the right-hand side of (2.39) represent the viscous dissipation

rate in the bulk phases. The next two terms are similarly identified as dissipation terms arising from surface

shear and dilatational viscosities. The last term on the right-hand side of (2.39) contains the surface tension

gradient, or Marangoni, effects and couples the total mechanical energy equation to the surfactant transport

equation. Its interpretation is less obvious and is discussed below.

If the bulk and surface viscosities p,_, tts, _ and the Gibbs elasticity es are set to zero, then equation

(2.39) shows that the total energy of the system is conserved. If only the Gibbs elasticity is set to zero, total
viscous dissipation rate has contributions from each of the bulk phases with additional contributions from

the surface phase.
An interpretation of the Marangoni term may be seen through an analysis of tile surfactant transport

equation (2.35), which may be equivalently expressed in the following form

r_(Vs.v) - °(r-r_,)-v.v,(r-r_)

-(F - F_q)(Vs. v) + D,V, '_ (F - F(._). (2.40)

After multiplying this equation by es(F - Feq)/F'2eq, integrating over the material surface S,,_(t), and using
the Surface Reynolds Transport and Surface Divergence Theorems, the Marangoifi term in (2.39) may be

re-expressed as

d

-/s %Ds ivs(r_r_)l_dS

- fs' % (F - F_q)_(Vs . v) dS. (2.41)

The Marangoni term must therefore be interpreted as having several contributions. The first contribution is
the time rate of change of an additional energy storage term arising from the non-equilibrium distribution of



surfactants.Tilesecondcontributionisdissipativeandarisesfromtheirreversiblediffusionof surfactants.
Thelasttermon theright-handsideof (2.41)is notclearlyidentifiableasadissipativeor energystorage
term.Forsmall-amplitudeoscillationsthistermwillbeshownto benegligiblysmallcomparedto theother
two. Dependingon thesurfacePecletnumbercharacterizingthesurfactanttransport,the leading-order
behaviorof theMarangonitermcanbeshownto bedissipative,provideanadditionalenergystorage,or
giveacombinationof these[32].

2.4 Analysis of total mechanical energy equation

In this section the averaging method is used to analyze the total mechanical energy equation of the drot_/Inedium

system performing small-amplitude shape oscillations.
Nondimensionalization is based on the inertial scales from the drop fluid properties:

length = R, time co-1 (pRa'_ 1/2= = -- , mass=pR 3. (2.42)
\ a_q /

Surface tension and surfactant concentration are scaled on their equilibrium values a_q and Feq. The nondi-

mensional forms for the total mechanical energy equation and surfactant transport equation are thus

d{K.E. + P.E.} = -c_e{Bulk Diss.}
dt

-#: {Surf. Diss.}

+e: {Marangoni} (2.43)

and

where

OF 1 2
+ Vs. (vF) = _--V, F, (2.44)

O--7 Yes

/ 1 fi£ _ (2.45)K.E. = :. _lvl z dV + -P. ;,. I/,12 dI ....

P.E. = £ dS (2.46)
m

Bulk Diss. : / 2(E: E) etl," + e J; 2(1_: I_)dI: (2.47)

L "£Surf. Diss. = 2(Es : Es) dS + _ (%. v) 2 dS (2.48)
,,, #,_ m

Marangoni = /s (F - 1)(tgs.v)dS. (2.49)
m

Equations (2.45) (2.49) represent, respectively, the total nondimensional kinetic and potential energy, the

bulk and surface viscous dissipation rate, and the Marangoni term.

The nondimensional Marangoni term can be re-expressed as

{Marangoni} - d{Mar. E.}

1
---{Mar. Diss.}

Pe,

- {Remainder} (2.50)

where

Mar. E. = _ _(F-1)2dS (2.51)
m



Mar. Diss. = f_ Ivs(r- 1)12dS (2.52)
#5' m

Remainder = f (F- 1)2(Vs .v) dS. (2.53)
,],S" ,_l

Mar. E. represents the nondimensional Marangoni stored energy term. Mar. Diss. is a dissipation rate. The

remainder term will be shown to be negligible for small oscillations.

In addition to £/p and HP, the dimensionless parameters in (2.43) (2.53) are defined to be

2 * * * e%)= ( # ,sw, t%w, e_ ,wR_ . (2.54)

These represent, respectively, the inverse of the Reynolds number, the dimensionless surface shear and

dilatational viscosities, the Gibbs elasticity, and the surface Peclet number.

In order to analyze the drop/medium system with the averaging method, the time-periodic velocity pro-

files in each phase must be determined. The shape oscillations are assumed to be small and axisymmetric,

and the Reynolds number is assumed to be large so that deviations from potential flow are confined to
thin Stokes boundary layers near the interface. The velocity and pressure fields in each phase are there-

fore found by the solution of a singular perturbation problem, which may be approximated using matched

asymptotic expansion techniques. For this purpose, the nondimensional shape of the interface and surfactant
concentration are taken to be

r(O,t;e) = 1 + eae(t)Pr(cosO) + O(e 2) (2.55)

F(0, t;e) = l+cgt(t)P_(cos0)+O(52). (2.56)

Here c is a small dimensionless parameter used to linearize the equations and P_ is the Legendre polynomial

of order g, where 0 represents the polar angle measured from the axis of symmetry. The time-dependent

amplitudes for the axisymmetric perturbations in shape at(t) and surfactant concentration gt(t) are given

by the real parts of the complex quantities

ae(t) = ]?{Ae ia_°t} (2.57)

9_(t) = ]?{Geia_ot}. (2.58)

Here A and G are complex amplitudes. Since the Reynolds number is assumed to be large, the assuined

nondimensional frequency f/co is taken to be the base frequency for small-amplitude inviscid oscillations of

a drop/medium system given by the Lamb formula [23]

fl_0 = g({ - 1)(g + 1)(g + 2) (2.59)
[(g + 1) + @/,]

Using the approximate forms for the velocity profiles found from the asymptotic analysis, order-of-

magnitude estimates are used to identify the dominant contributions to each term in the total mechanical
energy equation. Time-averaging these dominant contributions over one oscillation period further simplifies
the terms and allows for the derivation of a damped harmonic oscillator equation. The characteristic fi'e-

quencies for this equation capture the leading-order behavior of the drop/medium system influenced by the

effects of viscosity. When surfactants are introduced, the damped harmonic oscillator equation is coupled to

the surfactant transport equation through the Marangoni term. For that case, the leading-order behavior of

the system is described by the simultaneous solution of two coupled equations.

The following sections begin with an analysis of the base potential flow for the shape oscillations of

the drop/medium system. The succeeding four cases include the effects of viscosity in the system with

increasingly greater effects from the presence of an insoluble surfactant at the interface.

2.4.1 Base flow: inviscid oscillations

This section describes the analysis of the inviscid drop/medium system with no surfactants. All the dissipa-

tion terms on the right-hand side of the total mechanical energy equation (2.43) are zero and the total energy

10



ofthesystemis conserved.Thiscaseservesasthebaseflowfor largeReynoldsnumbershapeoscillations
anddemonstratestheapplicationof theaveragingmethodto thedrop/mediumsystem.

Fortheshapeperturbationin (2.55),theinviscidflowfieldsin eachphasearegivenbythesolutionof a
regularperturbationproblem.If timflowis irrotational,thescalarvelocitypotentials(scaledwithwR 2) for

the flow in each phase may be expanded in regular perturbation series in the small parameter c

¢(r,O,t;e,a) _ eOo(r,O,t) + O(c 2) (2.60)

¢(r,O,t;c,a) _ C$o(r,O,t) + O(e2), (2.61)

Here the arbitrary constant in the scalar velocity potentials has been set to zero in both phases. These

potentials are found by solving Laplace's equation within each phase

V 2¢0=0 for r < 1 (2.62)

V 2d0 =0 for r > 1. (2.63)

The potentials are subject to the O(c) kinematic boundary conditions

0¢o O_;o
- -ifboAe'_'tP((cosO) at. r = 1 (2.64)

Or Or

and the conditions that the potential in each phase remain finite.

The nondimensional pressure (scaled with pw2R 2) is related to the potential in each phase through the

linearized unsteady Bernoulli equation

0¢o
p = p_q-e_- + O(c2) (2.65)

Here Peq and iS_q are the equilibrium pressures in each phase satisfying the nondimensional Young-Laplace

equation p_q - 13_q(HP) = 2.

Time-periodic solutions

For a_(t) = _{AeiQ_°t}, the potential flow
nents v = V0 = 6_v_ + eo'vo and pressure in the drop phase are the real parts of

v_0(r, 0, t;e) =

voo(r,O,t;e) =

p(r, 0, t; e) - Peq =

equations may be readily solved. The resulting velocity compo-

The velocity comt)onents _ = V(_ = 6,._, +

_o(r, O, t; e)

_oo(r, O, t; e)

eifboAeia_ot pt(cos O)r e-1 + O(e 2)

eifttoAeia_ot l dP_ (cosO)re-1 + O(s 2)
g dO

ef_o,4e if2_°t _ Pf (cos 0)r _ + O(e z )

60_'0 and pressure in the medium phase are sinfilarly

= eifleoAei_,otpe(cosO)r -(e+2) + O(c 2)

1 dP_

= -eif_mAeif_'°t (g + 1) d-0 (c°s0)r-(e+2) -F O(g 2)

ef_oAcin_°t , 1 _ Pe(cosO)r-(t+l) + o(e2).
/_. + l)

(2.67)

(2.68)

(2,69)

(2.70)

(2.71)

(2.72)

Order-of-magnitude analysis

For this case the nondimensional total mechanical energy equation (2.43) reduces to

d

d-t {K.E. + P.E.} = 0.
(2.73)
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The nondimensional kinetic and potential energies are, respectively,

K.E. = /v,,, _'v'ZdV+ _{;,, _lg'2dV (2.74)

P.E. = l dS. (2.75)
as nl

The averaging method requires the time-average of the kinetic and potential energies to be calculated to

leading order. For this purpose, the potential flow apwoximations for tile velocity field in each phase are

used to calculate the leading order contributions to these quantities. Since the potential flow w_locities in

each phase are O(z), the integrals over the inaterial volumes in (2.74) may be expanded about a sphere of

unit nondimensional radius to yield

where v = eu and _, = eft.

/507o'e 2 _(u2_ + u_)r 2 sinOdrdOdp + O(c 3)

= c 2 _(ii; +'_)r 2 sinOdrdOdp + O(c3),

(2.76)

(2.77)

Without small quantities in the integrand, the evaluation of the integral over the material surface in (2.75)

is more complicated. Since the leading-order contribution from the kinetic energies is O(z "2) the contributions

from the potential energy are needed up to the same order. The assumed shape in (2.55) does not conserve

volume to O(c 2) and nmst be modified with an O(c 2) correction in order to achieve this. In general, for a

regular perturbation expansion of the nondimensional shape disturbance in the form

r(O,t;e) = 1 + cfl(O,t) + c2f.2(O,t) + 0(_ 3) (2.78)

the volume of the shape can be shown to be 47r/3 + O(c 3) if f2(O, t) = -f2(O, t). Using this modified shape

tile integral over the material surface ma5 _be expanded about the unit sphere to yield

mdS : d012_t_r{J0 I -t- 2gfl G- _--c2[(0fl_2-2f21}sill0d_d0-1-O(£'3)[ _k_- ] , (2.79)

where fl(O, t) = N{Aeie_°t}Pe(cosO).
An alternate form for the time derivative of the nondimensional potential energy term, obtained with the

use of the surface Reynolds Transport Theorem, is

"L £;fi dS = (Vs./,)(/_ • v) dS. (2.80)
m m

Here the unit normal and twice the mean nondimensional curvature are, respectively,

i_ = _ - _0e_--/0_(0, t) + O(e 2) (2.81)

V_ . il = 2 - e t _- _-[02fl (o,t) + cotO_-_(o,t) + 2fl(o,t)] + o(e 2). (2.82)

By the divergence theoreln and incompressibility, the constant part of tile curvature term will not comribute

to the surface integral on tile right-hand side of (2.80). This allows the time derivative of the nondimensional

potential energy to be expanded about a unit sphere in an alternate way

dS = -e J0 J0 + c°t0 00 + 2f_ v_ sinOdOdp + (,9(e3), (2.83)
m

which does not require an O(e 2) correction to the shape. The use of the kinematic boundary condition (2.64)

and an integration by parts shows that the time derivative of (2.79) is equivalent to (2.83). For consistency

in the time-averaging, which is to be discussed next, (2.79) will be used throughout the chapter on theory

to calculate tile nondimensional surface potential energy.
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Time-averaging
Sincetheshapeof the interfaceandthevelocitysolutionsineachphasearecomplexfunctions,their real
partsmustbeusedin tile integrands.Theaveragingmethodfurtherrequiresonlythetime-averageof the
realpartof the integralsmakingup thekineticandpotentialenergies.For('xamtfle,therealpartof tile
radialcomponentofvelocityin thedropis

1[i_eoAein,ot+ c.c.]+ O(a '2) (2.84)N{v_} = ePe(cosO)rg-l_

Here c.c. refers to the complex conjugate. The nondimensional time-average of the real part of the radial

component of velocity squared is

[.,.,/n_o _?{,',-}_ dt (2.85)2 ,o

= e2pff(cosO)r2( g-l)lf_e°AI---_2 + C0(ea). (2.86)
2

Here [ 12denotes the complex amplitude squared. This quantity may now be integrated over the sphere with
unit radius to obtain part of the total contribution to the kinetic energy.

,o ,0,o (_{v_}_} "= sin o&dod_ - (2g + 1)=I_e°AI_ + O(c_) (2.87)

Similar operations, taking the real parts before squaring and time-averaging the integrands over one

period, may be performed on all the terms in (2.74) and (2.75) to yield

(K.E.) = g(e + 1)(2g+ 1) (g + 1) + g Ifte0A[2 + O(e a) (2.88)

- 1)(e+ 2)
(P.E.) = 4_+e_ (e _T+ 1_ IAt_ +O(e3). (2.89)

Oscillator equation

Following the averaging method, when ae(t) = N{Aei_°t}, the complex amplitudes, which represent time

averages, may be replaced with terms involving ae(t) that would yield the same time average:

[_eOAI 2 --+ 2(b4) 2 (2.90)

1,41" _ 2(ae). (2.91)

Rewriting (2.73) in terms of ag gives

{ (g-_2g-7_l)(g+2)2(at)2}
d [(g + 1) + gtS/p] 2(&e)e + 4re + g2r r =0. (2.92)
d-t e'2_ g(g + 1)(2g + 1)

Expanding and simplifying yields

g(g - 1)(g + 1)(g + 2)
fi_ + ae = O(e). (2.93)

[(e + 1) + eft�p]

Here the nondimensional fi'equency for the shape oscillations is in agreement with Lamb's result (2.59).

2.4.2 Case 1: "negligible" surfactant effects

This section discusses the viscous drop/medium system with no surfactant effects. The surface properties

e_, g_, and #] are assumed to be "negligible", or O(a3). All the surface dissipation and Marangoni terms

on the right-hand side of the total mechanical energy equation (2.43) are neglected in this case.
Due to the complicated forms for the equations and boundary conditions for the drop/medium system,

this section calculates the uniformly valid velocity and pressure approximations to an accuracy of O(ec_).

Unfortunately, this does not allow for the consistent expansion of the leading order nondimensional total

mechanical energy equation to O(e')(_2). This will only affect the calculation of the resulting oscillation

frequencies to o(ag), leaving the resulting calculation of the damping constant to O(a 2) unaffected.
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Inner equations

Near the interface the radial coordinate may be replaced with r -- R+ y. Thus, y measures the distance away

fi'om the interface in the direction of the unit normal. Scaling the full Navier-Stokes equations in the drop

using the inertial scales (2.42) with 5 = (p/pw) 1/2 as the length scale for y introduces a small parameter

a = g/R, the square root of the Reynolds number. (_ represents the ratio of the Stokes boundary layer

thickness in the drop t.o the equilibrium radius. A similar Stokes boundary layer thickness 5 = (/i/tSw) _/2

and small parameter & = 5/R is found in the medimn phase. The nondimensional velocity (scaled with wR)

and pressure (scaled with pw2R2) in the drop are written as regular perturbation expansions in c_ such that

V(y,0, t;c,a) = c[Vo(y,0, t) +c_Vl(y,0, t)] + O(c(_ e) (2.94)

P(y,O,t;E,a) = p_q +e[Po(y,O,t) +aPl(y,O,t)] +O(ca2). (2.95)

Similar regular expansions are assumed for the nondimensional velocity V and pressure/5 in the medium in

terms of _. Here p_q (or _q) is the reference pressure in the drop (or medium) satisfying the nondiinensional

Young-Laplace equation p_q -P_q(HP) = 2. The size of the deformation is assmned to be small enough that
g << a 2 and the fluid properties in each phase arc taken to be of the same order in magnitude. With the

above expansions the inner equations in the drop phase take the following forms

0I,,,o
- 0 (2.96)

Oy

OPo
- 0 (2.97)

Oy

0I,_o OPo 021,_o
--+- - O, (2.98)

Ot O0 Oy'-'

with similar equations in the medium. These are the standard boundary layer equations for a flat surface

driven by a pressure gradient supplied by tim outer flow fields. The following boundary conditions hold at
the interface

OI'_o

Oy

I"_o = f_o = if_eoAein'°tP_(cosO) (2.99)

v00-%0 = 0 (2.100)

&ct(fi) 1/2 of'°°ItOy - 0 (2.101)
^

Po - P/5o = (g- 1)(g+ 2)Aei_e°tPe(cosO). (2.102)
P

These represent., respectively, tim kinematic, no-slip, tangential stress balance, and normal stress balance

boundary conditions. The prescribed shape perturbation in (2.57) identically satisfies the normal stress

balance boundary condition at this order.

The equations for the O(ea) inner variables take the following forms

OV'rl 0V0o

- cot 0 I'3o - 2I";0 (2.103)
Oy O0

OP1 0t':r0 02I%0
-- (2.104)

Oy Ot Oy 2

OVol OPi 02 Voi 0t='o OVoo

0_-- + O0 Oy 2 -- Y_- + 2 _y , (2.105)

with similar equations in the medium. The O(ea) variables are subject to the following boundary conditions
at the interface

t_1 = f_l = 0 (2.106)

Vol - a-fz01 = 0 (2.107)
C_

01'_, ([,,],/2 O(},, _ 0 (2.108)
Oy k p / Oy
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Herethenormalstressbalanceboundaryconditionisnotenforced.Sincetheshapeoftheinterfacehasbeen
prescribed,not all of theboundaryconditionscanbesatisfiedto O(ea). As is customary in the analysis

of drop deformations, see for example [30], the normal stress balance boundary condition is the degree of
freedom that is lost.

Tile boundary conditions far from the interface are replaced by matching conditions with outer velocity

and pressure solutions in each phase. For this problem, the leading order matching conditions state that
the limit of tile inner solution far from the interface must match the limit of the outer solution near the

interface. For the higher order matching conditions a more precise definition is needed and the reader is

referred to [54] for details.

Outer equations

Far from the interface tile full Navier-Stokes equations are nondimensionalized using inertial scales with

respect to the drop (2.42). If the nondimensional outer flow is irrotational and given by a scalar velocity

potential (scaled with a_R2), where v = V¢ in spherical axisymmetric coordinates, the viscous terms in the

Navier-Stokes equations for both phases are identically zero. The pressure (scaled with p_2R2) is given by

the unsteady Bernoulli equation. Anticipating the matching conditions with the inner viscous flow fields,

the outer potential flow fields are written as regular perturbation expansions in the parameter a:

O(r,O,t;e,a) = e[Oo(r,O,t)+aO_(r,O,t)]+O(ea 2) (2.109)

p(r,O,t;e,a) = Peq + e[po(r,O, t) + apl(r,O,t)] + O(ea2). (2.110)

Similar expansions are assumed for (h and/5 in the medium in terms of &.

The O(s) and O(s_) outer equations are all governed by Laplace's equation in spherical axisymmetric

coordinates and the linearized unsteady Bernoulli equation for the pressure

V 2 Oi = 0

c00i / for/=0,1. (2.111)
Pi -- cOt

Similar equations for ¢ and/_ are used in the medium, The outer fields are subject to the boundary conditions

that far from the interface the scalar velocity potential vanishes and the pressure tends to its reference value.

The boundary conditions near the interface are replaced by matching conditions with inner velocity and

pressure solutions in each phase.

Time-periodic composite solutions

An additive composite expansion [54] is used to obtain unifornfiy valid approximations for the time-periodic
velocity and pressure fields in each phase. These take the following forms

V t°t = v(r,O,t) +V(r,O,t) -Vm(r,O,t) (2.112)

ptOt = p(r,O,t) + P(r,O,t) - pm(r,O,t). (2.113)

Here v t°t and ptOt represent tile total composite fields and Vm and Pm represent the matched outer (or inner)

fields in the overlap region. Similar expressions are used to construct the velocity and pressure in the medium.

Solving the inner and outer equations in each phase, subject to their boundary and matching ('onditions,

and constructing the uniformly valid solutions ill outer variables yields the following apt)roximations for the

t.ime-periodic velocity components and pressure. The approximate fields in tile drop phase are given by

tot/ OL) eifttoAein_°tPe(cosO) {r t-1v r (r, 0, t;e, =
%

v_ _1 1)Coo[r e-1 EXP]} + O(5a 2) (2.114)w, 0(e+ - ,

v_°t(r, 0, t; s, a) = sif_eoAe ia'°t 1 dPe (cos 0) rf-1 + Coo(2 r)gXP

dO (
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a(l+i)_[(g+l)Coore-llColEXP] + O(ca_), (2.115)

pt°t(r,O,t;G oz) - peq = cf_oAeif2t°t _p¢(cosO) {r _

v/21+i) }_(_ + 1)Coot _ + O(¢ct2). (2.116)+a(1

Similarly, the fields in the medium phase are given by

_t°t(r,O,t;Gd) £if_goAeifae°tpe(cosO ) {r -(e+2)Vr z

^ x/_ 1 eC rr-te+2) E-XP]_+O(e& 2) (2.117)
-a(l+i)_--- oo[ - j

1 dPe(, s0)/r (e+2)_;°'(r, 0, t; e, &) = -eif_eoAe '_'°t (g + 1) 70 ,co, + 000(2 - r)E_-X-P
k

v_ 1 rf0 r_(e+2 ) + d'o_E-XP]} + C9(e6 2) (2.118)-d (1 + i)V_gO t oo
J

1 1)Pe(cosO) {r_(/+l 1/st°t(r, 0, t;e,6) -/5¢q = ef_oAe in_°t (_

v_ 1 eC r -(e+l)} + O(e&2). (2.119)+&(l+i)_ oo

Here EXP and EX--'_Pare functions that decay exponentially away from the interface in each respective phase.

They' are given explicitly by:

[ _---(1__+ i) (r -a 1)] (2.120)EXP = exp /X/ft,o

EX-"--P = exp[- [X/_o(l-_2 -z)(r-1)]& . (2.121)

The real constants Coo, Col, 000, and C0l are given in Appendix B.
The above fields contain terms of two types: those that resemble potential flow or those that exponentially

decay, away' from the interface. In the tangential component of the velocity, the exponentially deca.ving terms

appear to leading order, or 50(¢), in the perturbed fields. In the normal component of the velocity, the

exponentially decaying terms do not appear until second order, or (9(¢a). In the pressure, the exponential

decay terms do not appear at all to this order in the expansion.
The above velocity fields in each phase are used to approximate the terms in the energy equation.

Order-of-magnitude analysis

The direct, substitution of the unifornlly valid velocity approximations in the integrands of the nondimensional

total mechanical energy equation leads to very comI)licated expressions. These expressions can be greatly

simplified using an order-of-magnitude analysis to identify the most important terms. For this case the

nondimensional total mechanical energy equation (2.4a) reduces to

d {K.E. + P.E.} = -ct 2 {Bulk Diss.} . (2.122)
dt

The nondimensional energies and dissipation may be approximated using the uniformly valid velocity

approximations from the matched asymptotic analysis. It is again convenient to use a new notation for the
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order-of-magnitudesfor thenondimensionalvelocityin thedropphase:

vt°t = c[(u0 + _Ul) + (v0 + _:vi)] + o(c_2), (2.123)

with a similar expression for the Inedimn phase. Here the u's refer to the potential flow terms in the

uniformly valid velocity approximations with small CO(l) gradients in the radial direction. The volume

integrals containing these terms will be significant over the nondimensional volume of CO(l).
The U's refer to the vortical flow terms in the uniformly valid velocity approximations with large CO(l/a)

gradients in the radial direction that exponentially decay away from the interface. To distinguish these large

gradients, the radial derivatives are recast in terms of the scaled variable y = (r - 1)/a:

OU (r' O't)07" = -al_y(y,O,t),• (2.124)

where OU/Oy is an O(1) quantity. The volume integrals containing the components of U are significant over
the nondimensional volume of the boundary layer of O(a) near the interface in each phase.

The following order-of-magnitude analysis is based on a substitution of these velocities into the integrands

of the total mechanical energy equation. The integrals are written in spherical coordinates and expanded

about a unit sphere. Only those contributions which are O(e2a 2) and larger are kept.

The nondimensional kinetic energy in the drop phase is

f 1 tot[_ dV;,, _lv =

f2 f f'l{ }C2 2
_o _o_o 2 (_o+_o)+2_(_o_ +_oo_o_) _sinOdrdOde

-t-C20_[2"/_/° 1/2(_Olr=1_ U,,o+ uool_=lUoo)+(U_+U_o) (2.125)
Jn Jn J- [o0 -_

sin OdydOd_ + (-9(c2a_). (2.126)

A similar expansion for the nondimensional kinetic energy in the medium in terms of &. There the linfits of

integration of the potential flow velocity components are fl'om r = 1 to r = ec, and the limits of integration
for the vortical flow velocity components are fl'om y = 0 to y = ec. Here the expansion has been truncated at

O(e2a 2) because the uniformly valid velocity expansions accurate to O(ea) do not contain the O(ea 2) terms

required to calculate the nondimensional kinetic energy to O(e2a2). The level of algebra needed to construct
the uniformly valid velocity to O(ea 2) is enormous and was not attempted. Neglecting the O(e'%(_) kinetic

energy terms is shown below to affect only the calculation of the natural frequency of oscillations at O((_).

The calculation of the damping constant to O(a e) is unaffected.

The nondimensional bulk viscous dissipation in the drop is

2(E t°t :E t°t) dV =

"2 1 {(Ou_o,_2 1 {Ouoo )'2 1e2/VV 2 \ Or ] +_:i\ O0 +Ur0 +_(u_o-cotOuoo) 2
30 JO JO

lrO ool O ro+-2 [ _-r + r \--_- - Uoo sinOdrdOd_

___g. cc_ /27r/n/0 { 1 (0_70{}'_ 2 1 (0_£00 0]Ir0 )'_ JO aoa-c_2 -- _ --- ,'=1 --2,__\ oy / + \--gU + oo _,oo

1 {OUoo'_'2_

+aY \ Oy ] j sinOdydOd_ + O(e2a).

OUoo

Oy

(2.127)
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Again,asimilarexpressionisobtainedfor thebulkviscousdissipationin themediumin termsof& andits
ownlimitsofintegration.Heretheleading-ordercontributionto thenondimensionaldissipationis O(_;a -1)

and derives from the no-slip boundary condition at the interface.

Time-averaging

The averaging method proceeds by first multiplying the real parts of the velocity components ulaking up the

integrands, time-averaging these integrands over one period of oscillation, and finally integrating over tile

unit sphere. For the terms in the nondimensional total mechanical energy equation (2.122), this procedure

yields

e2rr { (g + 1) + -fi-g(K.E.} = g(e + 1)(2e + 1) p

(2g + 1) 2 v_ 1 /
(V_ +/v_) 2 _- [fle°AI2 + (9(c232) (2.128)

+a

(e - 1)(e+
(P.E.) = 4re + ¢2rc (-27_-i) 2)IAI2 + O(d') (2.129)

e24rr { 1 (2g + 1) /_ X_e0<BulkDiss.) - e(e+ 1) _ 2v_ (v_ + ¢;?)
1

12(e_- 1)pp + 2e(e+ 2)+ 2(4_ + ,/_)_ . 7-

+ 1/ 1]} O(e2ct).+ (2.130)

The time-average of the total nondimensional potential energy has been calculated as in the base poten-
tial flow using (2.79). Note again that the with the O(ea) velocity solutions the time-average of the total

nondimensional kinetic energy can only be calculated to O(e_a). Since the time average of the total nondi-

mensional viscous dissipation rate in the bulk is multiplied by a 2 in the nondimensional total mechanical

energy equation, tile kinetic energy term is the only quantity not known to at, least O(¢232).

Oscillator equation

Following the averaging method with at(t) = N{Aein_°t}, tile complex amplitudes in (2.128) (2.130) are

replaced with the quantities

I_eoA[ 2 _ 2(he) 2 (2.131)

[A[2 --+ 2(at) 2. (2.132)

After simplifying, the total mechanical energy equation reduces to a damped harmonic oscillator equation
of the form

(1 + aAtl) fig + (aBel + a2Be2) ize + fl_o at = 0. (2.133)

Here

(2g + 1) 9 1 v_ 1
AtI -- (2.134)

v_ [(t + 1) + e_/p] (v_ + v_) flv/_

Btl (2g + 1) 2 1 _ _ (2.135)
= v_ [(t + 1)+ e_/p] (v_ + 4-_)

Be2 = (2g + 1){2(g 2 - 1)/_tO + 2g(g + 2)£2t)/tt + fi[(t_ + 2)p - (g - 1)/5]} (2.136)
[(g + 1) + gP/P](v"fi-fi + v/_) '2

If the O(a 2) added mass terms were calculated, the damped harmonic oscillator equation would take the

form

(1 + aAn + ct2Ag2) ag + (aBn + ct2Bg2) he + fl_0 at = 0. (2.137)
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Assumingexponentialbehaviorfor thetime-dependentoscillationamplitudeoftheformag(t) = e i_bt , with

f_e complex, the expressions for the frequency and damping constant can be found to be

R{f_} = f_eo 1 - a_- + 8f_o 2 + (9(a 3) (2.138)

Bn c_2 (hnB_l - B_2) + O(c_3). (2.139)= + 2

These show that A,2 contributes only to the expression for the frequency. Therefore, equation (2.133) call

be expected to accurately predict frequencies to O(c_) and damping constants to CO(c_2).

Interestingly, the results of (2.138) and (2.139) with As', = 0 agree with the O(a: 2) frequency and damping

constant calculated by Marston [28], who solved the eigenvalue problem for the complex frequencies using a

normal mode analysis accurate to O(a 2). From this comparison it would appear that the O(ct 2) contribution
to the added mass is zero.

2.4.3 Case 2: "small" surfactant effects

In this section, the viscous drop in vacuum is analyzed when surfactants are present. For this case, all surface

terms on the right-hand side of the nondimensional total mechanical energy equation (2.43) are retained.

The surface properties %, _, and p_ are assumed to be "small", or (9(a2).

This section presents the uniformly valid velocity and pressure approximations to O(ea2). This allows

for the consistent expansion of the nondimensional total mechanical energy equation to O(a2), capturing

both the frequency shift and damping times to this same order.

Inner equations

As in Case 1, the radial coordinate may be replaced with r = R + y in the inner region, and the flfll Navier-

Stokes equations in the drop using the inertial scales (2.42) with the Stokes' boundary layer thickness as the

length scale for y. The nondimensional velocity (scaled with wR) and pressure (scaled with pa.,2R 2) in the

drop and the surfactant concentration at the interface (scaled with its equilibrium value F¢q) are written as

regular perturbation expansions in a such that

= e[Vo(y,O,t) + aVl(y,O,t) + c_2V2(y,O,t)] + (.9(set a) (2.140)

= p,q +g[Po(y,O,t) +aPl(y,O,t) +a2P2(y,O,t)] +O(ga a) (2.141)

= 1 + ¢[F0(0, t) + aF1 (0, t) -I- a2F2(O, t)] + CO(eaa). (2.142)

V(y,O,t;e,a)

P(y, O, t; e, a)

r(0, t; e, a)

The size of the deformation is assumed to be small enough that c << ct 2. The inner equations in the drop

phase take the following forms at (9(5)

0t%
- 0 (2.143)

Oy

OPo
- 0 (2.144)

Oy

OVoo OPo 0'_V00
-- + - 0 (2.145)

Ot O0 Oy 2

OFo 1 (02F0 _0 o)0_- + M0 - _e_ _ + cot0 = 0, (2.146)

where

(0t% )Mo(O, t) = \ O0 + cot 0 V00 + 2t% . (2.147)

These are the leading-order continuity, radial and tangential components of the linearized momentum equa-

tions, and the surfactant transport equation for the perturbed fields. These fields are subject to the kinematic,
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tangentialstressbalance,andnormalstressbalanceboundaryconditionsat theinterface

Vr0 = if_eoAeia'°tPe(cosO) (2.148)

0V0o
- 0 (2.149)

Oy

Po = (e - 1)(_ + 2)Aei_°tPt(cosO). (2.1.50)

The prescribed shape in (2.55) identically satisfies the nondimensional normal stress balance boundary
condition at this order.

The equations for the O(ca) inner variables take similar forms:

0IJ;1
- Mo

Oy

OP_ OE-o

0F1

Ot

Oy

0}_1 OP1 02Vol

0---_, + O_ - -Oy 2

1 (02F1 _01)-- -I- _:/1 -- _es _k _ "_ cot 0 = O,

02Go

Ot Oy 2

OPo OlJ_o
- Y_0-+2 o_-

(2.151)

(2.152)

(2.153)

2.154)

where now

(Oil1 ) y=oMl(O,t) = \-_- +cot0V01 +2I%1

The (9(ca) boundary conditions at the interface are

OVol OGo e* 0Fo
- + _o + ----

Oy O0 c_2 O0

.: ( ONo )+_ \--_- + 2cot0No

Pl = O,

,q OMo
a 2 O0

2.155)

2.156)

(2.157)

(2.158)

No(O,t)= /0_o ) _=o\ 00 cot 0 Voo .

Finally, the equations for the O(ca 2) inner variables are

OG2

-Oy

oB2

Oy

0V02 OP2 0W0_
--+

Ot O0 Oy 2

where

- M_ + yMo

OG1 02G1

Ot Oy 2

OP1 2 0Vol .,OPo

OVoo OMo

-2Y-57 + o_-

0F2 1 (0'_F2 __02 )O_ + M2 - _ \ _- + cot 0 =

(2.159)

(2.160)

(2.161)

(2.162)

(2.163)

where

(OVo2 ) y=oM2(O,t)= \ O0 +cotOVo2+2k;2
(2.164)
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TheO(ca 2) boundary conditions at the interface are again

v;,2 = 0 (2.165)
0I"02 Ol"rl e* OF 1 K s 0J_'ll

- + I'_1 +
Oy 00 a 2 O0 a 2 00

• )\_- + 2cot0N1 , (2.166)

where

(0V01 cot 0V01) _=0 (2.167)Nl(O,t) = \ O0

The normal stress balance boundary condition is not enforced at O(cc_2). This is similar to the loss of the

normal stress balance boundary condition at O(ea) in the viscous drop/medium system. The boundary

conditions on the inner fields far from the interface are replaced by matching conditions with outer velocity

and pressure solutions in each phase.

Outer equations

In the outer region far from the interface the full Navier-Stokes equations are nondimensionalized using

inertial scales (2.42). Again, the viscous terms appear at O(_ 2) but are identically zero for an outer potential

flow. Anticipating the matching conditions with the inner viscous flow fields motivates writing the outer

flow fields as regular perturbation expansions in the parameter c_:

¢(r,O,t;E,a) = c[¢o(r,O,t) + a¢l(r,O,t) + ct2¢2(r,O,t)] + O(e(_ 3) (2.168)

p(r,O,t;e,a) = p_q + e[po(r,O,t) + apl(r,O,t) + a2P2(r,O,t)] + O(ea3). (2.169)

Here the arbitrary constant in the scalar velocity potential has been set to zero and p_q is the reference

pressure in the drop satisfying the nondimensional Young-Laplace equation Peq = 2.
With the above expansions, the O(e), O(ea), and O(ea 2) outer equations are all governed by Laplace's

equation in spherical axisymmetric coordinates and the linearized unsteady Bernoulli equation for the pres-

sure
V '_¢i = 0

0¢_ / fori=0,1,2. (2.170)Pi -- Ot

These are subject to the boundary conditions that far from the interface the scalar velocity potential vanishes

and the pressure tends to its reference value. The boundary conditions near the interface are replaced by

matching conditions with inner velocity and pressure solutions in the drop.

Time-periodic composite solutions

As in the Case 1, additive composite expansions are used to obtain uniformly valid approximations for

the total time-periodic velocity field v t°t and pressure field ptOt in the drop. Solving the inner and outer

equations in the drop, subject to their boundary and matching conditions, and constructing the uniformly

valid solutions yields the following approximations for the time-periodic velocity components, pressure, and
surfactant concentration written in outer variables:

t°t(r,O,t;C, ol) eif_eoAei_e°tpe(cosO) {T t'-I
V r _-

_a2 v_ _1 + 1)Col[re_ 1 - EXP]} +(9(ca 3), (2.171)(1 + i) (e
¢,
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_a2 v_ 1 [(g+l)Colre___Co.2EXP]_+O(ea3), (2.172)
(1+ i) av Eo J

pt°t(r,O,t;C,a) -- Peq = cf_2oAeK_t°t_Pg(cosO) {r f

°!2_v/2 1 }_ fl_eo(g + 1)Coar t + O(ea 3) (2.173)
]

F(0,,_E,(,) l 1 = _Gci_,O'{l+olCgl,OL2Cg2}P_(cosO)+O(Eoz3), (2,174)

Here EXP is an exponentially decaying function given by

o
The complex constants Cot, Coz, G, C91, and Cg2 are given in the Appendix B.

Again, the above fields contain terms of two types: those that resemble potential flow or those that

exponentially decay away from the interface. In the tangential component of the velocity, the exponential

decay terms appear at O(ea) in the perturbed fields, which is one order higher in a that in the viscous

drop/medium system of Case 1. In the normal component of the velocity, the exponentially decaying terms
do not appear until O(Ea2). In the pressure, the exponentially decaying terms do not appear at all to this

order.

Order-of-magnitude analysis

As before, the direct substitution of the uniformly valid velocity and surfactant concentration approxima-

tions in the integrands of the nondimensional total mechanical energy equation leads to very complicated

expressions that can be greatly simplified using an order-of-magnitude analysis. Recall that for this case the

nondimensional total mechanical energy equation is

d

d_{K.E. + P.E.} -c_2 {Bulk Diss.}

-p_ {Surf. Diss.}

+e_ { Marangoni} . (2.176)

The Marangoni term can be written as

{Marangoni}
d

dt {Mar. E.}

1
---.{Mar. Diss.}

P%

- {Remainder}. (2.177)

Equations (2.45) (2.53), with the fluid properties in the medium set to zero, define the quantities in curly

brackets.

The nondimensional energies, dissipation rates, and Marangoni terms may be approximated using the

uniformly valid velocity approximations from the matched asymptotic analysis. As before, it is convenient
to use a new notation for the order-of-magnitude of the velocity in the drop:

V t°t : ff[(U 0 + O{U 1 -1- 0_2U2) -1- (Uo + otU1 + c[2U2)] -1- 0(£0_3) • (2.178)

For this case, the only nonzero components in the expansion (2.178) are u_o, u_.,, uoo, uo2, U,.2, Uol, and

Uo2. Here the u's refer to the terms resembling potential flow with small O(1) gradients. The volume

integrals containing these terms will be significant over the nondimensional volume of (.9(1). The U's refer

22



to thevorticalflowtermswithlargeO(1/a) gradients in the radial direction that decay exponentially away

fiom the interface• The volume integrals containing these terms will be significant over the nondimensional

volume of the boundary layer of O(o_) near the interface.
Following the order-of-magnitude analysis of Case 1, keeping only those contributions which are (,9(c 2_t2)

and larger, the nondinmnsional kinetic energy in the drop is

' 1 totl2 dI ....;,, =

211{ _ }2I _[_[ -_ (u'2ro+U_o)+2c_2(u,,oUr2+UooU02)rSsinOd/.dOd_
C dO JO .I0

o1{ }+ezc_ f _[_/ _ 2c_ U0o[r:l Uol sinOdydOd_ + O(12c_3). (2•179)
J0 J0 J--oc,

Unlike the previous drop/inedium case, all the nondimensional kinetic energy terms to C)(E')(_ 2) may be
calculated because the uniformly valid velocity profiles have been determined to O(cc_2). This will allow for

the calculation of the fi•equency shift to O(c_2).

The bulk viscous dissipation rate in the drop is

f 2(E t°t : E t°t) dV =
r,n

_o _oJo r" \ 00 r"

__ 1.2

+-2 [ Or + r \ O0 uoo sin0drd0d_

+O(eSa). (2.180)

The surface viscous dissipation rate arising from the surface shear viscosity is

J_s tot e2 n 2 sinOdOd_ + O(e2a) (2.181)2(Et_ °t :E_ )dS=
.. d 0 ,I 0

where

no(O,t) = ( Ouoo ) ,•=1\ O0 cotOuoo • (2.182)

The surface viscous dissipation rate arising from the surface dilatational viscosity is similarly:

(V_ v'°t) 2 dS m 2 sinOdOdc 2 + 0(¢'2ct) (2.183)
• _ C dO dO

where

(0 ,oom0(0, t)= \ 00 +cot0n00+2U,,o . (2.184)

The nondimensional Marangoni term is

(r- 1)(Vs. vt°t)dS = ¢2 f 'f'ro,, osinOaOa +o(d ). (2.185)
m dO dO

The Marangoni storedenergy term is

(F dS _'2 sin OdOdp + 0(c2c_) (2.1861)
,,, J o J 0 2 o
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Finally,theleading-orderMarangonidissipationrateis givenby

£ - = i2T O o [_(P 1)12 dS e 2 sinOdOd7) + O(e2a). (2.187)
m ,o ,0 \_-]

The expressions in (2.186) and (2.187) need to be calculated only to C0(e2) since they couple with the

nondimensional total mechanical energy equation through the Marangoni term, which is multiplied by e_,

an O(a 2) parameter for this case.

The integrand of the Remainder term is O(g a) and hence neglected.

Time-averaging

Using the time-averaging procedure
chanical energy equation (2.176) and the Marangoni exprcssion (2.177) are given by

as outlined in Case 1, the time-average of the terms in tile total me-

1

(K.E.) = c2_ g(2g1_I_'°AI2+ + O(c'_2) (2.188)

(g - 1)(g +
(P.E.) = 47r+c27r (-2gT_ 2) lA12+O(g3) (2.189)

(Bulk Diss.) = e24¢r_lf_e0.41 'z + O(e2a) (2.190)

(Surf. Diss.) = _22ng_{-+_)(e+l)(e+2)+e(e-1) If_eoAI2

+O(e2a) (2.191)

= ¢27r_(if_mAG* + c.c.) + O(e_a) (2.192)(Marangoni)

1
2 _[ ,2 ', (2.193)(M.E.> = e ,_ GI + O(c-_)

2 [(_ + 1)
(Mar. Diss.) = c 2zr_lG[- + O(c2a). (2.194)

(z_t 1)

Coupled oscillator equations

Following the averaging method with ae(t) = _{Ae ia_°t} and ge(t) = N{Gein_°t}, the complex amplitudes

in (2.188) (2.194) are replaced with the quantities

IfteoAI 2 _ 2(de) 2 (2.195)

IAI2 _ 2(ae) 2 (2.196)

(iQtoA-G + c.c.) _ 2(9thg) (2.197)

iOl= -_ 2(gt) 2 . (2.198)

These would give the same time average if at(t) and 9_(t) were time-periodic with al nondimensional period

27r/_2t0. Simplifying the nondimensional total mechanical energy equation yields the damped harmonic

oscillator equation for the nondimensional amplitude of the shape oscillations,

iit + ae[a22(g-1)(2e+l)+aze(e-1) 2+tt;(g-1)(g+l)(e+2)]

+ at [g(g- 1)(t + 2)] = -9_ [e;g(g- 1)]. (2.199)

This oscillator equation is coupled to the simplified Marangoni expression:

e(e+
Oe + 1_)9_ = (g - 1)he. (2.200)

Pes

Setting a 2 * * and * to zero reduces the coupled set of equations to a simple harmonic oscillator, es, tCs, #s
equation for ae(t), the time-dependent amplitude for the shape oscillations of a drop in vacuum. The
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oscillationfrequencyis in agreementwith theresultsof Lamb [23] when the properties of the nmdium are

negligible compared to those of the drop.
By setting e_ = 0 the equations decouple and the oscillator equation for ae(t) contains damping contri-

butions from a 2, _, and/1_.

For large surface Peclet number P%, the time-dependence for the surfactant concentration may be seen

to be proportional to the time-dependence for the amplitude of the shape oscillations. Therefore the term

on the right-hand side of (2.199), which arises from the Marangoni effect, acts to "stiffen" the system and

increase the natural frequency of oscillation.
For small Pes, equation (2.200) shows that ge(t) is proportional t.o d_(t). Tile term on the right-hand side

of (2.199) thus gives rise to an additional damping mechanisnl from tile irreversible diffusion of surfactant
molecules.

For a surface Peclet number of O(1), the coupled system (2.199) and (2.200) needs to be solved simulta-

neously to describe tile oscillations.

2.4.4 Case 3: "medium" surfactant effects

In this section the presence of the surrounding medium is neglected and the viscous drop in vacuum system

when surfactants are present is analyzed. For this case, all terms on the right-hand side of the nondimensional

total mechanical energy equation (2.43) are retained. The surface properties e_, _, and _ are assumed to

be "medium", or O(a).
Due to the larger influence of the surfactant monolayer, the unifornfly valid velocity and pressure ap-

proximations are calculated to an accuracy of O(ec_). This allows for a consistent expansion of the total

mechanical energy, equation to O(a), capturing both the frequency shift and damping times to this same
order.

Inner equations

As before, the inner fields are written as regular perturbation expansions in (_ in the scaled variable y:

V(y,0, t;c, ct) = g[Vo(y,O,t)+ctV,(y,O,t)]+O(ca 2) (2.201)

P(y,O,t;e,a) = p_q + e[Po(y,O,t) + aP_(y,O,t)] + O(ea 2) (2.202)

r(O,t;e,a) = l+e[P0(0, t) +_rl(0, t)] + O(ec_2) (22o3)

With the above expansions, the O(e) and O(ea) inner equations take the same forms as in Case 2 equations

(2.143)-(2.146) and (2.151) (2.154), respectively. The kinematic, tangential stress balance, and normal stress
balance boundary conditions at O(e) are

No given by (2.159).
condition.

The corresponding boundary conditions at O(ea) are

l'rl ---- 0

0I.'%1 OI';0 e_ 0Pl _ OM1
+ I,%o +

Oy O0 a: O0 _ O0

+._:(ONo )a \--_-+2cot0N0 .

The normal stress balance boundary condition cannot be satisfied at this order.

V_o = i_oAei_t°tP_(cosO) (2.204)

017oo _ e: 0Fo _cs0M0 /*: (0_0 "_ (2.205)
Oy a cOO +-_-cOO +-0 \ 00 +2cotONo /

Po = (g- 1)(g + 2)Aein*°tPt(cosO). (2.206)

The prescribed shape (2.55) identically satisfies the normal stress balance boundary

(2.2or)

(2.208)
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Time-periodic composite solutions

The outer equations are identical to those from Case 1. Thus, the composite expansions may be obtained

as before and the composite expansions are given by

vtr°t(r, 0, t;e, a) = ei_eoAei_°tPdcos O) /F _-1
%

V_1+i) X/_ttO }
,__=(g + 1)Coo[r I-1 +EXP] +O(¢a2), (2.209)

+a(1

_°t(r, 0, t; e, _) =

pt°t(r,O,t;c, ct) -- Peq =

r(0, t;c,a)-i =

(
_iaeo,ae,a,o , 1 ""-_(cos 0) _/-1 + Coo(2 - ,-)EXP

dO (

v_ l }-_(1+i) _[(e+ 1)c00/ 1 _C01EXP] ___ O(cot2), (2.210)

v_ 1 (t + l)Coore } + O(ea2) (2.211)-_ (1 + i) av'_o
,/

EXP is the function in (2.120) that decays exponentially away from the interface in the drop. The complex

constants Coo, Col, G, and Cgl are given in the Appendix B.
The fields in (2.209)-(2.211) take the same form as the the fields in the drop phase (2.114) (2.116) for

the drop/medium system considered in Case 1. In Case 1, however, the presence of the O(e) vortical field

in the tangential component is traced to the viscous forces between the fluids in each phase in satisfying the

no-slip boundary condition at the interface. In this case, on the other hand, its presence comes fi'om the
forces exerted between the fluid in the drop and the surfactant monolayer.

Order-of-magnitude analysis

The nondimensional total mechanical energy equation and Marangoni expression are identical to Case 2

equations (2.176) and (2.177).
The energies, dissipation rates and Marangoni terms may be approximated using the uniformly valid

velocity approximations from the matched asymptotic analysis. It is again convenient to use a slightly

different notation for the order-of-magnitude of the velocity in the drop:

V t°t = £'[(U 0 q- O_Ul) "}- (U0 nt- ctU1)] -t- O(_oz2) . (2.213)

For this case, only the U,.0 component is zero. As before, the u's refer to the terms resembling potential

flow with small O(1) gradients. The volume integrals containing these terms will bc significant over the

nondimensional volume of O(1). The U's refer to the vortical flow terms with large O(1/o) gradients in

the radial direction that decay exponentially away from the interface. The volume integrals containing these

terms will be significant over the nondimensional volume of the boundary layer of O(a) near the interface.
Substituting the composite expansion into the expression for the kinetic energy and expanding to O(e2a)

yields:

j(_ 1 tot 12dV;,, _Iv =

e2f2_Ff_I{ }Jo Jo Jo _ (u_o + U_o) + 2a(u_ou_l + uoouol) r2 sinOdrdOd_
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r2-r-ro1{ }+_1 II _ 2.ool,=luoo+uL sinOdydOdp+O(c2c_2) .
dO dO d--0<3

Similarly, the bulk viscous dissipation rate it, the drop is given by:

ft 2(Et°t : Et°t) dV =
"m

_"_ 2 ggs_.e\-bT]

The surface viscous dissipation rate arising from the surface shear viscosity:

/'T
f9 tot e2 No) 2 sinOdOdqo + O(e2a).2(Et,°t' : E s )dS = (no +

,_ dO dO

Here, no and No are given by:

(2.214)

(2.215)

(2.216)

0'U00 ) r=lno(O,t) = \ O0 cotOuoo (2.217)

( OUoo cotOUoo) r=l (2.218)xo(o,t) = \ N

The surface viscous dissipation rate arising from the surface dilatational viscosity is similarly:

(V, • vt°t) 2 dS = e2 (too + Mo) 2 sin OdOd_ + C (_"o.),
m J 0 J 0

where

(2.219)

( Ouoo ) (2.220)mo(0, t) = \ O0 +cotOuoo+2U_o
/

( OUoo \

Mo(O,t) = \ O0 +cotOUoo+ 2Uro . (2.221)

The nondimensional Marangoni term is given by

(F _ 1)(Vs . vtOt) dS = e 2 Fo(mo+_Io)sinOdOdc2+(O(e2a). (2.222)
m go J0

The stored Marangoni energy is

£ I(F - 1) '_dS : e 2 {2,/, 1F2sinOdOdiz + O(e2a) • (2.223),,, 2 .,o .,o 2

Finally, the Marangoni dissipation rate is

£ - __r .r[V_(F 1)12 dS g2 sinOdOd_ + O(g2a) (2.224)
._ J0 J0

The integrand of the Remainder term is (9(_ 3) and again neglected.

Time-averaging

As before, the order-of-magnitude estimates for the integrals in the energy equation are time-averaged over

one period of oscillation and integrated over the unit sphere. For the terms in the nondimensional total
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mechanicalenergyequation(2.176)andtheMarangoniexpression(2.177),thisprocedureyields

(K.E.)

(P.E.}

(Bulk Diss.}

(Surf. Diss.}

1 { o= c'2_ g(2g + 1------_1 + _ e_i_--i) --

+ 2_--_e+l (COOe-'_/_+ c.c.)] } lf_toAl"+ O(c"_2)( )
(g-1)(g+2)

= 4_+?_ T@¥V) IAI2+°(_3)

= _47r_Zi_[Coo121f_toAI2+O(c 2)

(g2 _ 1) { (g + 2) [1 + (Coo + C0o) + IC0ol2]

[(t-i) -- (g+l) ] -'}+ [_ + (C0o+ c0o) + (e----2_) Ic°°l_ t,;_-_ I_t°Al2

+O(£c_)
1

e27r (2--_ [(g - 1)(ifl,oAU + c.c.)

+(e + 1)(ifteoCooAG + c.c.)] + O(e2a) (2.229)

(Mar. E.) = e2u_lat 2 + O(e2a) (2.230)

2 t(t+ 1) 2
<Mar. Diss.) = s 2_-_IGI + O(c2c_). (2.231)

(Marangoni) =

Coupled oscillator equations

(2.225)

(2.226)

(2.227)

(2.228)

Following the averaging method with as(t) = N{Ae in`°t} and gt(t) = N{Gein*°t}, the complex amplitudes

in (2.225)-(2.231) are replaced with the quantities

IfltoAI 2 --+ 2(ht) 2 (2.232)

IAI 2 _ 2(at) 2 (2.233)

(if_t0AU + c.c.) ---> 2gtdt (2.234)

IG[ 2 _ 2(gt) 2 (2.235)

which would give the same time average if as(t) and gt(t) were time-periodic with a nondimensional period

27r/f_to.

Due tothe presenceofthe complex constantCoo, itisnot clearhow to replacethe time-averaged quantity

(if_toCooAG + c.c.) in the Marangoni term with terms involving d_ and gt. A result may still be extracted

fi'om the above analysis if the Gibbs elasticity is set to zero. The limit when e_ = 0 corresponds to the case
when there is so much insoluble surfactant on the interface that local changes in shape do not change the

surfactant concentration appreciably. For this situation the surfactant concentration and surface tension are

approximately constant over the interface. The Marangoni term that couples the oscillator equation for the

time-dependent amplitude of the shape deformation to the surfactant transport equation then vanishes. The

resulting decoupled oscillator equation for at(t) is given by

2g (Cooe_i_t4 + c.c.)] }(2t + I)a (g+l)[1c_221_iis { 1 + _ g_{-_2 I) + --

+

+#;(g - 1)(g+ 1)(e+ 2) [1+ (Coo+ c.c.) + IC0o1_]

+n_g [(t - 1)2 + (g - 1)(e+ 1)(Coo+ e.e.) + (e + 1)_]C0o[2]
)
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+ a_ [e(e - 1)(e + 2)]

= O(_2). (2.236)

Here the complex constant Coo is independent of e_ since it has been set to zero. Although the expressions

for the O(a) added mass and damping terms may be found by evaluating tile real terms, they are extremely

complicated and are not written explicitly here.
If the surface viscosities are zero, the uncoupled oscillator equation reduces to

iig + [g(g - 1)(g + 2)lag = O(a 2) (2.237)

This limit shows that without surface viscosity, the O(c_) added mass and damping terms are shifted to O(32),

which is neglected in this leading-order analysis. Without the surface viscosities or Marangoni effects, the

viscous bulk fluid in the drop has nothing to "push against" to produce O(c_) dissipation in tile boundary

layers.
If the bulk viscosity of the drop is neglected, the oscillator equation simplifies to

{ 4g(g- l)(g + Z)P:t_*s }fie + at [(g_ 1)(e + 2)#; + e(e + 1)t_;]

+ as If(g- 1)(g+ 2)1 = O(c_2). (2.238)

Here a damping term reinains froln the dissipation within the interface due to the surface viscosities. Note
that in the linlit when one of the surface viscosities is larger than the other, it is the smaller of the two

surface viscosities which contributes the most to the damping. The natural frequency of oscillation remains

unchanged from the Lamb frequency to O(c_), but the presence of the O(c_) damping term in this limit causes

a frequency shift at O(_2), which has been neglected.

2.4.5 Case 4: "large" surfactant effects

In this section, the leading-order effects of viscosity and surfactants on the drop/medium system are analyzed

when the surface properties %, p_, and K_ are assumed to be "large", or C9(1).
For this case the viscous dissipation terms in the bulk phases are negligible conlpared to the surface

viscous dissipation and Marangoni effects at the interface. For this reason the uniformly valid velocity

profiles in each phase and the analysis of the energy equation using the averaging method is not needed. The

dynamics of the drop is determined by the potential flow, but potential flow cannot satisfy the tangential

stress balance boundary condition. To treat this, V0, the tangential velocity of the interface is introduced.

l/_ is distinct from the tangential velocity of

The assumed solutions and leading-order

¢(,', 0, t; e, c_)

p(r, O, t; e, c,)

5(_, o, t; _, _)

i)(r, O,t; _, _)

r(0, t; e, c_)

I+ (0, t;e, c_)

the fluid in each phase evaluated at tile interface.

field equations are thus of the form:

= e¢o(r,O,t) + O(ec_) (2.239)

= p_q +cpo(r,O,t) + O(ec_) (2.240)

= eq_0(r, 0, t) + O(ec_) (2.241)

= #_q + ¢{)o(r,O,t) + O(ea) (2.242)

= 1 + zF0(0, t) + O(ea) (2.243)

= eVoo(O,t) + O(ec_) (2.244)

OF0

Ot

04)0 for r < 1 (2.245)
V 2¢o=0, Po- Ot

V 2¢o =0, :5o--t50(_° for r > 1 (2.246)
p Ot

1 (02F0 _0o)--+M0= _ \ 002 +cot0 atr=l. (2.247)
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Thesearesubjectto the O(c) kinematic, tangential stress balance, and normal stress balance boundary

conditions at r = 1, respectively,

0¢o Oiao Of
Or Or Ot

0 - e; 0Fo + ____
a O0 a O0

_; 0too
+ .5 (OXo )c_ \--_- + 2cot0No

(2.248)

(2.249)

(2.250)
= -\002 +cot0 N+2f .

In the above expressions Mo and No are given by

(OV0o ) r=,Mo(O,t) = \ O0 +cot01'_o+2Vro (2.251)

(OV0o cot 0 V0o) (2.252)mo(O,t) = \ _g

These contain the tangential velocity of tile interface I'_o and the normal velocity velocity of the fluid

evaluated at the interface V_o = O0/Or.

The surface deformation f(O,t), surfactant concentration Fo(0, t), and the tangential w_locity of the

interface Voo are assumed to have the forms

f(O,t) = ae(t)Pt(cosO) (2.253)

Fo(0, t) = ge(t)Pt(cosO) (2.254)

Voo = be(t)_(cosO). (2.255)

Here at, 9e, and be are the time-dependent amplitude perturbations for a pure mode. The kiimmatic boundary
condition (2.248) allows a similar modal expansion to be obtained for the velocity potentials @0 and 4_o with

amplitudes proportional to fit.

Coupled oscillator equations

Substituting the modal expansions (2.253) (2.255) into the normal stress balance boundary condition (2.250),

the tangential stress balance boundary condition (2.249), and the surfactant transport equation (2.247) leads

to the three coupled equations:

_ae + ---P (g + 1) ae

0

9e - g(g+ 1)be+2he

= -(e- 1)(g + 2)ae + 2e_9e - _[4dg + 2g(g + 1)be} (2.256)

= -e;ge + _[2gg - e(f + 1)be] + #_(g- a)(( + 2)bt (2.257)

g(e+ 1)
- ge. (2.258)

Pes

Using equation (2.257) to eliminate be(t) leaves the two coupled equations:

_" 4a;p:e(e - 1)(g + 1)(e + 2) 15el(g + 1) + gPlP] + a_ [ {@7]) +_-{ 2 [)(/+-2)]
J

+ at [g(g- 1)(g + 1)(g + 2)]

{ 2e*/t;e(e- 1)(g + 1)(g + 2)9e [_;-l_ 7 i-)7+_5-{.__ _{-+--_)] j

{,I,+,) )0< + Pe----7-+ [<e(e+ lXTX;Te--1)(g+ 2)]
2#;(g - 1)(f + 2)

= -a,{[_;t(,TU+-;}-_---1]{g+2)] } •

(2.259)

(2.260)
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Equations (2.259) and (2.260) describe the leading-order dynamics of the system. They neglect all effects at

If the surface shear viscosity #* is set to zero, the oscillator equation for the amplitude of the shape

oscillations (2.259) decouples from the surfactant transport equation and reduces to

g(e- 1)(g + i)(_ + 2)
= O(a). (2.261)

iit + at. [(e + 1) + eft�p]

Thus, even when the surface dilatational viscosity is nonzero, or the surface tension depends on surfactant

concentration, the leading-order dynanfics for the shape oscillations of the system are, in the absence of

surface shear viscosity, the same as those for an inviscid drop/medium system.

If the Gibbs elasticity is zero, equations (2.259) and (2.260) decouple. The oscillator equation (2.259)

thus reduces to

{ 4_;:p:_(g-1)(g+l)(t+2) }5e[(g + 1) + eft�p] + fie [_-_(gTB 7-)]{-g---_(-/+-2)]

+ at [g(g- 1)(e + 1)(e + 2)] = O(a) (2.262)

Equation (2.262) is valid for a drop/medium system and generalizes the result (2.238) obtained in Case 3,

which neglected the bulk viscosities and Gibbs elasticity for a drop in vacuum.
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Chapter 3

Numerics

3.1 Governing equations and boundary conditions

Here the potential flow solutions for moderate-amplitude shape oscillations of a drop in vacuum without

gravity are considered. The inviscid drop has an unperturbed equilibrium radius R, a density p, and a clean

interface with constant surface tension oo.

As before, the Reynolds number associated with the shape oscillations is assumed large enough that
deviations from inviscid flow are present only in thin boundary layers near the surface. This implies that

the fluid motion in the bulk of the drop is well approximated as inviseid. For the moderate deforlnations

considered here, the flow is further assumed to be irrotational. The governing equation is then Laplace's

equation for a scalar velocity potential ¢.
Because of their ability to track the position of the interface, boundary integral methods are particularly

well suited to this free-surface problem. There are two common boundary integral formulations for Laplace's

equation: the single-layer potential representation and the double-layer potential representation. Tile latter

has been shown [42] to be a more accurate and efficient fornmlation for the numerical simulation of the

shape oscillations of two-dimensional drops. This section discusses the extension of tile double-layer potential

boundary integral formulation to the case of axisymmetric shape oscillations.

3.1.1 Regularized boundary integral representation

The free-space Green's function for Laplace's equation in three dimensions is

G(x_,x) - 1 1 with V2 G(x_,x) = 5(x - xi). (3.1)
4zr Ix - xi]

x is the field point position vector and xi is the source point position vector.

For a source point xi located on the boundary of the domain, the double-layer potential boundary integral

representation [35]

1(_)/_(x). Va(x_, x)q(x) dS(x) + _q(x_) = ¢(x_), (3.2)

expresses the harmonic scalar velocity potential ¢ in terms of a surface distribution of dipole strengths q
oriented parallel to the outward pointing unit normal vector ft. Specifying the scalar velocity potential ¢

reduces the double-layer representation (3.2) to a Fredholm integral equation of the second kind for the

dipole strengths q. Tile dipole density distribution may be used to find a vector velocity potential through

the integral relation [35]

¢(xd = - [ /_(x) x Va(x_, x) q(x) dS(x). (3.3)
Js (x)

The velocity of the interface can be expressed by the two distinct representations: v = we = V x _O.
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Figure 3.1: a) The local coordinate system in the meridian plane with variable parameterized with arclength

s. b) The local coordinate system in a plane perpendicular to the axis of symmetry.

The identities [42]

n. Va(x_, x) dS(x) 1 (3.4)z --

(x) 2

fix Va(x,,x) dS(x) = 0, (3.5)
(x)

may be used to express the integral representations and relations in their regularized forms

fs fl(x)- VG(xi, x) [q(x) - q(x,)] dS(x) + q(xi) = ¢(xi) (3.6)
(x)

_b(xi) = - f fi(x) x VG(xi, x)[q(x) - q(xi)] dS(x). (3.7)
Js (×)

The integrands in (3.6) and (3.7) are non-singular everywhere in the integration domain S(x). The regular-

ization of the integral representations and relations, along with the choice of a convenient local coordinate

system, to be discussed next, greatly simplifies the numerical problem.

The boundary integral formulation, which reduces the three-dimensional problem to a two-diinensional

one, may be further simplified with the assumption of an axisynmmtric geometry, which reduces tile two-

dimensional integrals over the surface to one-dimensional line-integrals over the contour of tile domain in a
meridian plane. For convenience, a local coordinate system is introduced as illustrated in Figure (3.1). The

position vector x(s, _o) = G(qo)r(s) + 6zz(s) and all other variables are parameterized in terms of arclength

s, where ds 2 = dx. dx for a fxed meridian angle _o. Note that r represents the distance from the z-axis and

not that from the origin. Explicit relations for this local coordinate system are given in Appendix C. For the

axisymmetric case, all variables except the unit vectors G and 6_, are independent of _. The infinitesimal
surface area is dS = r dsd_ and the cp-dependence may be integrated analytically to give the parameterized

forms
L

o fi(s) VG(si,s) r(s) [q(s) - q(si)] ds + q(si) = ¢(si) (3.8)

F L

_b(si) = - ]a _" [fi(s) x VG(si, s) r(s)] [q(s) - q(si)] ds, (3.9)

L is the total arclength between the "poles" of the axisymmetric drop. 6_ is evaluated in the meridian plane
which contains xi. The vector velocity potential is ¢ = /b_< The axisymmetric kernels in (3.8) and (3.9)
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canbeexpressedin termsofthecompleteellipticintegralsofthefirst andsecondkinds.Explicitformsfor
theseweaklysingularkernelsandtheirasymptoticbehaviorass --+si may be found in the Appendix D.
Unlike the regularized integrand in (3.8), which is zero at s = si, analysis of the integrand in (3.9) reveals

that ass_si

--_ Oq (si) + O(s - si) . (3.10)
_. [fl(s) × Va(si, s) ,.(s)] [q(s) - q(s_)] 2_ 0s

Since v = V¢ = _7 x _b the velocity of tile interface v =flv,, + _vs has components that may be

calculated from derivatives in arclength only

= 0_.,. r'(s) I" "
vn(s) = fl" (V x O) _-s (s) + r_-_t'tsJ

v_(s) = _. v¢ 0¢- as (s).

(3.11)

(3.12)

3.1.2 Boundary conditions

The potential flow solution to the integral representation in (3.8) must satisfy the kinematic and normal

stress balance boundary conditions

dx
- fly,, (3.13)

dt

p = a_(C_ + C_). (3.14)

Here, fi(s) = -i_,.z'(s)+i_,r'(s) is the outward pointing unit vector normal to the surface, p(s) is the pressure,

and C_(s) = z'(s)r"(s) - r'(s)z"(s) and C_(s) = -z'(s)/r(s) are the principal radii of the curvature with

primes (') denoting differentiation with respect to arclength. The unsteady Bernoulli equation may be used

in (3.14) to relate the pressure to (b. This gives

(De) 1 "2 2,, = _(v,, -v_) - (C, + C¢), (3.15)

where the variables have been non-dimensionalized using the inertial scales

length = R mass = pR 3 time = (pR3/a_q) t/'_. (3.16)

The time derivative in (3.15) is with respect to an observer moving with the normal velocity of the interface.

3.2 Numerical procedure

The double-layer potential boundary integral formulation uses equations (3.8), (3.9), (3.11), (3.12), (3.13)

and (3.15) to follow the time-evolution of the drop's shape. The equations are discretized by dividing the
drop boundary into N equally-spaced nodes, with spacing As = L/(N - 1) in the interval 0 < s < L.

Since the dynamics are driven solely by the curvature variations around the drop, it is important to

calculate higher-order arclength derivatives accurately. For this purpose a least-squares spectral transform

method [42] is used to represent all the parameterized surface variables. The method approximates each
variable by a truncated sine and cosine series that is periodic in twice the total arclength L:

f(s) - ao2 E ak cos + bk sin s+ -- ( )3.17

k=l k=l

2m-hi

= Z ckSk(s). (3.18)
k=l

Here f(s) is any variable and 8k(s) is a sine or cosine shape function with 2m + 1 - N_ coefficients ck.
For N discrete nodal values of f(si) and assuming N_ < N, equation (3.18) represents an over-determined

34



systemof equationsfor thecoefficients.Thismaybesolvedin a least-squaressense[42].Theleast-squares
procedureresultsin a symmetricandpositive-definiteNc x Nc system of equations for the coefficients ok.

Inverting the coefficient matrix is most efficiently accomplished using a Cholesky decomposition routine [36].
Once the function coefficients are determined, its derivative or integral may be exactly calculated.

Aliasing is a potential problem in the least-squares spectral transform method. It can be avoided by,

adjusting Nc so that the smallest wavelength represented by the shape functions, 4L/(N_ - 1), is larger than

four times the largest of the unequally-spaced arclength increments As,,_ that appear after each change in

the drop's shape. For the simulations shown in this work N_ is chosen to be about half the total number of

nodes N in order to accurately resolve the drop shape and eliminate aliasing.

Since the drop is axisymmetric, all the surface variables are either even or odd functions in arclength.
For instance, z and ¢ are even flmctions while r and _p are odd functions. Higher-order derivatives of these

functions are alternately odd or even functions. Neglecting the sine (or cosine) shape functions in (3.17) for

even (or odd) variables decreases the size of the Nc x N_ system of equations for the least-squares spectral

coefficients by about a factor of two.
The inverse transform back to the nodal values of the variable involves a matrix multiplication by the

discrete shape function matrix Sk(si), as defined in (3.18). To redistribute the nodal values of the variable at

equal arclengths tile discrete shape function matrix is evaluated at si = (i - 1)As, i = 1,..., N. Inspection

of (3.17) shows that this matrix is independent of the total arclength L, which implies that it need only be
calculated once for use in redistributing the variables.

The regularized integral equations are discretized into matrix equations using a trapezoidal quadrature

rule. For example, the discrete analog of the integral equation (3.8) takes the form

N

__wjK(si, sj)q(sj) =¢(si), fori= 1,...,N, (3.19)
j=l

with

n(sj). VG(si,sj)7"(Sj), for j ¢ i,
N (3.20)

K(s_,sj) = 1 - _--_(1 - 6ki)Wkfi(sk)" VG(si,sk) r(sk), for j = i.
k=l

Here wi are the trapezoidal quadrature weights and 6ki is the Kronecker delta symbol. The resulting

matrix equation is solved using an LU decomposition routine. The use of regularized integral equations and

trapezoidal quadrature weights allows for the complete discretization and solution of the integral equations

without the need for explicit interpolations between tile nodal values.
The numerical procedure begins by initializing the shape of the drop x(s) and the scalar velocity potential

¢(s) and calculating arclengths between the possibly unequally-spaced nodes. Tile arclengths between the
nodes are first parameterized with the linear distance between the nodes. This approxiination is then

improved by: 1) solving for the least-squares spectral coefficients of r and z; 2) calculating their derivatives
r' and z' with respect to the parameterization; and 3) integrating the arclength function [(r') 2 + (z')_] _/_ to

find the true arclength s at each node.

The curvature, kernel, and tangential velocity at the interface is constructed from the derivative of the

position vector and scalar velocity potential with respect to the true arclength. The normal velocity of the
interface, however, must be found by solving the matrix equivalents of (3.8) and (3.9) with (3.11). Using

the instantaneous velocity and curvature of the interface, the drop shape and scalar velocity potential are

updated in time using a Runge-Kutta scheme. To prevent clustering, the nodes are redistributed to equal

increments in arclength following each time step.

3.2.1 Base flow: inviscid oscillations

There are several conserved quantities that may be used to measure the accuracy of the numerical calculation.

They include the volume, center of mass, and, for inviseid oscillations, the total energy, which is composed of

the kinetic and potential energies. The quantities of volume and kinetic energy involve volume integrals, but

these may be turned into surface integrals with the Divergence Theorem and the vector identity V. x = 3
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SincedS = r dsd_, these surface integrals may be turned into line integrals in thein three dimensions.

axisymmetric coordinate system. Thus, for the calculation of the volume of the drop,

LV 1 V . x dV = (zr' - rz')r ds. (3.21)
=3 ;n 3Jo

Similarly, for the kinetic energy in the drop, since v,_ = ft. (V x ¢) = ft. re:

//= Ivl2dV = _. .K.E. ;n

The potential energy is the surface area of the drop

/?P.E. = [, dS = 27r r ds. (3.23)
•IS m

The initial conditions for the shape of the interface and the scalar velocity potential are taken to be

Ix(0)l = 1 + ¢P_(cos0)

0(0) = o. (3.24)

Figure 3.2 shows an example calculation for small-amplitude shape oscillations in the quadrupole mode.

Calculations using a fourth-order Runge-Kutta time-stepping scheme did not. differ significantly from the
calculations using a second-order scheme. Tile second-order Runge-Kutta scheme was therefore used for

all the calculations presented in this thesis. The calculated period of oscillat_ions was found to be 2.22 in

excellent agreement with the nondimensional theoretical value of 27r/v/8 _ 2.221. The conserved quantities

of total energy and volume were found to deviate from their initial values by less than 10 7% and 10-s%

respectively.

3.3 Modified boundary conditions

In this section, the base potential flow fornmlation for the drop in vacuum is modified t.o incorporate the

effects of viscosity and surface rheology. Scaling t,he governing equations for this problem with the inertial
scales, the nondimensional conservation of mass and momentum equations, and the transport equation for

an insoluble surfactant take the forms:

" V t'°t = 0, (3.25)

C_V tot

-- -{- V t°t - VV t'°t ---- --Vp t°t -[- O_2V 2 V t°t , (3.26)
Ot

OF 1 V_ 2F. (3.27)
C9_-_ + Vs " (vt°tF) - p%

Here v t°t and ptOt are temporary notations for the nondimensional velocity and pressure fields. The surfactant

transport equation is coupled to the continuity and momentum equations through the boundary conditions
and the surface equation of state. Although a nonlinear surface equation of state could be incorporated into

the numerical formulation, the linear surface equation of state

or(F) = 1 - e_(F- 1) (3.28)

is assumed here. This allows for direct comparisons to the corresponding results from the small-amplitude

theory• The nondimensional components of the stress balance boundary conditions and the kinematic bound-

ary condition take the respective forms

ptOt __ 2a2 (ft. EtOt. fi) (Vs. fi) - e_(Vs, fi)(F - 1)

+2#_(V_. Eta°t) - fl + n_(V_- fi)(V_. V t°t ) (3.29)

a2(fi • E t°t. I_) = -e_V_F + 2#s(V_. Ets°t) " Is + _Vs(V_. v t°t) (3.30)

dx
- l_l(121.vtOt) (3.31)

dt
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Figure 3.2: Simulations of an initial perturbed inviscid drop in vacuum after the initial conditions ¢ = 0 and

Ix(0)l = R[1 + 0.01P2 (cos O)] with N = 31, Nc = 15, and At = 0.001. The scale factor R in the initial shape

ensures that the nondimensional equilibrium volume Veq and the equilibrium energy E_q are 4rr/3 and 47r,

respectively.
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To begin to link the base potential flow formulation of tile last section to the equations incorporating

viscous and surfactant effects above, tile total nondimensional velocity and pressure are separated into two

parts

V t°t' = V + V (3.32)

ptOt = p+ p. (3.33)

The lower-case letters (v, p) represent the potential flow velocity and pressure fields while the upper-case let-

ters (V, P) represent the vortical velocity and pressure fields. The potential flow fiehts satisfy the irrotational

Euler equations

V.v = 0 (3.34)

0v
o9--/+v" Vv = -Wp. (3.35)

The vortical velocity and pressure fields satisfy the full Navier-Stokes equations (3.25) and (3.26), after

subtracting (3.34) and (3.35):

V.V = 0 (3.36)

....0V + v VV + V Vv + V VV = -VP -l- t12_ 72V -1-O_2_/2 V. (3.37)
Ot

Inserting the decomposition (3.32) into the total surfactant transport equation (3.27) yMds

c9_-+ (v + V). WsF + [%. (v + V)]F = V, 2 F. (3.38)

The boundary conditions (3.29) (3.31) may also be similarly decomposed, but for clarity this step is

postponed for later sections.

The boundary integral representation for the potential flow in the previous section drives this problem.

The incorporation of the bulk viscous and surfactant effects comes in by replacing the boundary conditions

for potential flow with the total stress balance and kinematic boundary conditions in the boundary integral

formulation and keeping only the leading order terms that contribute bulk viscous and surfactant effects.
The unknown vortical terms in the boundary' conditions are found by satisfying the leading-order equations
for the vortical fields.

The vortical fields are assumed to be nonzero only in the thin Stokes boundary layers that. form to satisfy

the tangential stress balance boundary condition. This leads to considerable simplifications in subsequent.
sections.

The idea is to use the order of magnitude estimates for the velocity and pressure fields from the small-

amplitude theoretical analysis and keep all the terms in the modified boundary conditions (written in local

coordinates) up to O(32). These additional terms can be calculated to leading order from the Navier-Stokes

equations (3.36) and (3.37). Doing so requires the assumption that the boundary layer fields decay away
fl'om the interface.

This section begins by, describing a method to include bulk viscosity in what would otherwise be a

potential flow calculation for large Reynolds number shape oscillations of a drop in vacuum. The succeeding

three cases include increasingly greater effects from the presence of an insoluble surfactant at the interface.

3.3.1 Case 1: "negligible" surfactant effects

This section considers the effects of bulk viscosity on the shape oscillations of a drop in vacuum when the

nondimensional surface properties e_, #_, and _ are "negligible", or (_9(a3). These effects are to be included

to leading-order in the numerics by following the procedure just described.

Order-of-magnitude analysis

By using the relations in Appendix B, the nondimensional boundary conditions at the interface may be
written in local coordinates as follows

P + P - 232 \ On + -O--n-n/ = C_ + C¢, (3.39)
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a 2 2 \ Os \-_-n + _ - Csi,'_ = 0, (3.40)

dr _ Oz

dt Os (vn + E,), (3.41)

dz Or
dt - -_s (vn + I";_). (3.42)

Here r and z are the components of the interface shape. In (3.40), the tangential component of the stress

balance, the symmetric part of the fi_ component of the rate of strain tensor corresponding to the potential

flow part has been used.
As before, it is convenient to introduce a new notation in the order of magnitude analysis. The small-

amplitude analysis in section sec:casel shows that the potential and vortical flow fields may be written

as:

v = fi(U_o + 32u_2) + _ (u_o + aeus2) + O(a 3) (3.43)

P = Po + a'2P2 + O(a 3) (3.44)

V = fia2U,_2 + _(aUs_ + 32U_2) + O(a 3) (3.45)

p = oL2p2 + 0(33). (3.46)

As a reminder, the lower case fields (v,p) represent potential flow and the upper-case fields (V, P) represent

vortical flow. Here the O(a 2) vortical pressure 1°2 has been introduced to account for the nonlinear pressure

not appearing in the linear analysis. The potential and vortical fields depend on both n and s. The potential
flow fields vary slowly in n and s over a nondimensional length scale of O(1). The vortical fields, on the other

hand, vary rapidly in n, and decay exponentially away from the interface over a nondimensional length scale

of O(a). The normal derivatives of the vortical fields are denoted by a scaled normal coordinate n _ aN.

For instance, the normal derivative of the (9(1) tangential component of the vortical velocity

0U_0 10U_o
- -- (3.47)

On a ON '

where OU_o/ON is an O(1) quantity. The order-of-magnitude estimates for the surfactant concentration F
depend only on s and vary slowly over a nondimensional length scale O(1). At this stage the only calculable

quantities are the O(1) quantities representing the base potential flow.

Inserting the scales (3.43) (3.46) into these boundary conditions and expanding yields

po+a2 p2+P'2-2 =C_+C_+O(a 3) (3.48)

[ {'0_o ) OU_lta z 2\ Os Csuso + ON j =0+O(a 3) (3.49)

dr Oz
dt Os [uno + a 2 (u,,2 + U,_2)] + O(a 3) (3.50)

dz Or .

dt - Os [un° + a2(u"z + Un2)] + O(a3). (3.51)

Neglecting the O(a 2) in these equations reduces them to those for the base potential flow. In order to

incorporate the leading order effects of viscosity into the boundary integral fornmlation, the quantities at

O(a 2) must be determined. Of these, the O(a ')) corrections to the potential flows, u,c2 and P2, may be
absorbed into the base flow calculation. Another term which may be treated at this stage is Ou,_o/On, which

may be calculated with the help of V • v = 0 written in local coordinates and evaluated at the interface

OU_o Ou,o 1 Or
O_ + _ + r O--sv_° + (C_ + C_,)v,_o = 0. (3.52)
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Thethreeremainingvorticalterms,U,_2, P2, and OUsx/ON, must be found from equations (3.36) and (3.37)
for the vortical fields V and P. These fields need only satis_" the leading order equations since their higher

order corrections are neglected in tile modified boundary conditions above.
From the assumed scaling, the continuity equation call be expanded to O(a 2)

(OU,,2 OUsl 1 Or U ) = O(32 ) (3.53)v.v=_\ ON +-5Y+ 70_ _'

The time derivative of the boundary layer velocity is

OV Os ^ OUsa

Ot - Ot aUsl + sa--_-- + O(32). (3.54)

Equation (3.54) involves the time derivative of the unit tangent vector. Since the unit tangent vector is the

arclength derivative of the position vector, it can be related to the arclength derivative of the normal velocity

through the kinematic boundary condition

o(ox)o(ox)Ot - Ot _ = _ _- = Os (nun°) + O(a). (3.55)

It follows that

OV Ou,,o. ( OUsl )0---[- = fict_-s c%1 + s a \ 0t -{-Cs_tn°Usl "l- O(C_2) "

The nonlinear terms in (3.37) may be also expanded to give

{ OUn2 )v. VV = fia _u,_o-g-f- - CsusoU_l

[ OUsl { OUs2 OUsl _ ]

+_ [,,,,o--bW-+ ,_ _,_,,o_- + ,,_o a_ ]j + °(_)

)V.Vv = flc_\ 0s C_Us0 Us1

( Ouso )+_c_ _ +C_u,,0 L%l +O(cd)

(3.56)

(3.57)

(3.58)

V.VV = O(c_2). (3.59)

Similarly, for the pressure and viscous terms

VP
OP'2

= fi_-_ + 0(_2) (3.60)

a_V 2v = O(a '2) (3.61)

and

02 Us 1

Combining (3.54) (3.62) in the Navier-Stokes equations gives, to leading order:

(_ OUsl lOru" _'_ + _ + 7_ =')= o + o(d_)

o_,.,,,o_p - _ 2 \ O_ c_,o - 7G_,,o us_ = '_b-N + O(__)

OUsl OUsl OUs2 OUsl ( Ouso ) 02Usl_--gi- + _"°-b_ + _,,o-g-_ + _o 0--7-+ _ \ o_ + 2cs_,o u_, = _-b--_ + o(d) .

(3.62)

(3.63)

(3.64)

(3.65)
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Thecontinuityequation(3.53)maybeidenticallysatisfiedbydefiningthevorticalpartof theboundary
layervelocityasthecurlofa vectorvelocitypotential@= 6_. In generalV takestheform

V = Vx_ (3.66)

(hsOk9 hs dh_ ¢2 + g -hn . (3.67)

Here, h,_, hs, and h_ are tile metrical coefficients for the local coordinate syst.em. To obtain order of

magnitude estimates, the vector velocity potential is written • = a2q2_ + O(a:_), with _2 assumed to have

large normal gradients. The velocity magnitudes may be thus restated in terms of _2 so that

Un2 = hs0¢2'2 hs Oh_
Os h_ Os _2 (3.68)

0_2 (3.69)
U_l = -h_ ON

h,_ Oh_

Us2 = h--_On q'2. (3.70)

With the continuity equation identically satisfied, these expressions may be substituted into equations

(3.63)--(3.65) for the vortical fields. Notice that with these substitutions ever), term in the equations (:on-
tains the vector velocity potential, which decays exponentially away from the interface with a decay factor

1/a, and at least one normal derivative. These observations, and the knowledge that all the other quantities
in the equations vary slowly over the thin Stokes boundary, allow for the siinplification of the equations

through an integration in the normal direction. In a sample term containing an explicit normal derivative,

this process proceeds by first expanding the slowly varying terms about their values at the interface,

OUsl OUsl

au.o ox - _ u.ol,_=ooh--=-+ o(_ _) (3.71)

and, by integrating over a nondimensional boundary layer thickness a, where the nondimensional variable n
is rescaled with c_, inside the drop

f9 0Vsl -nr ./._o OUsi dN+O(ofi)
OQ

-- d _n01,_:0(U_,l,,:0- U_xl.=__) + O(a3)

= __2 [ 0'I'2"_
_U,,o_) + O(a 3) (3.72)

7_=0

where the last expression on the right-hand side has been evaluated at the interface n = O, where the metric
coefficients are known.

Other terms, may be similarly approximated:

Ou_o, Ou_o h 0'II2
_-_ _ = -'_-5_-_ '_-5_

0,_o ( 0% ")= -_ _ ,_=o-h"-_-) + 0(,_ _)

[ Oh,,_,]0us0 0 (hn_) - a + O(a2). (3.73)
: -_,_:o_b_ _ _j

The second term in the square brackets may be neglected. This expression may now be integrated over the

nondimensional boundary layer thickness to provide

S_' o..ool_.o_-_-s c,,l adN = -a 2 -_s _ (hn_2) dn + O(a 3)

= _(_2 0ltsO n=O_--8 [(hn_2)[n=o -- (hnllJ2)[ .... 1] -[- 0(°_3)

= -a2 (_q22),_=o+(_O(a3) (3.74)
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Proceedingsimilarlyfor eachof thetermsin thevorticalequationsleadsto,

oz.'_ = -oz",,,_0_- + 2 \ 0s -c.+,,s0 - 7N_,_0] %
-_- O(O_ 3 ) (3.75)

a.'O_2 OO& .' 0_.' a2 [Ouso - Cv)u_o] _2-Oi- + au,_o ON - a Uso 0--7 - [Os + (2Csuno

+ oz.' O.'cg2
-5_ + °(_a) (3.76)

All the terms up to O(oz.') are retained and evaluated at the interface. The remaining normal derivatives in

these equations can be evaluated as follows. The normal derivative on the left side of (3.76) can be absorbed

into the time-derivative of the vector velocity potential with respect to an observer moving at the velocity

U,_o. The normal derivatives on the right sides of the (3.76) may be found from the tangential strcss balance

boundary condition.

Modified equations and boundary conditions

Dropping the order of magnitude estimates and reverting to the original notation in terms of v, V, and

yields the following modified boundary conditions for the base potential flow

where

_[ ,_ = (v2 -v_)-(C_+C_)- 2o_2-_n +v,_I.';, + P (3.77)

dr Oz

dt - Os (v'_+ I_,) (3.79)
dz Or

dt - 0--_(v'_ + I.';_) (3.80)

oz.' Ov,_ oz" JOys 1 Or ]On - [ Os + -r--Osv_ + (C_+ C_,)v,_ (3.81)

0q_ 10," qj
v. - os + -rOs (3.82)

P = -v,_s + 2\ Os -C*v* -7-_sv, q2 (3.83)

_.' 0"_ 2__ (Or,, )On 2 - \ Os - C_v, (3.84)

These equations are evaluated at the interface and retain all the leading order viscous terms at O(a.'), but

neglect the higher order contributions. Note that in (3.77), Bernoulli's equation has been used to relate
the pressure to the time derivative of the scalar velocity potential and a V,_(O¢/On) = v,_-t_, which is an

O(a 2) term, has been added to both sides to ensure that the time derivative is consistent with the kinematic
boundary condition. A similar term V_(OgJ/On) has not been added to (3.78) because it is an (9(a 3) term

and may be neglected in the above equations.

The numerical procedure begins by initializing the r(s), z(s), ¢(s), and _(s). After calculating the

arclengths, the kernels of the boundary integral formulation are formed and used to cak:ulate the base

potential flow velocity components. The potential flow velocity components are used to evaluate the right-
hand sides of the evolution equations for r, z, ¢, and q2, which are updated with the Rung-Kutta time

stepping scheme.

Figure 3.3 shows an example calculation for small-amplitude quadrupole shape oscillations of a weakly

viscous drop. The additional evolution equation and modified boundary conditions were seen to produce an
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Figure 3.3: Simulations of an weakly viscous drop in vacuum for a 2 = 0 (dashed line) and a 2 = 0.005

(solid line) after the initial conditions ¢ = 0 and Ix(0)l = R[1 + 0.01P2(cos0)] with N = 31, Nc = 15, and

At = 0.001. The scale factor R in the initial shape ensures that the nondimensional equilibrium volume Veq

and the equilibrium energy E_q are 47r/3 and 47r, respectively.

instability in the simulations. The instability was traced to the variable q2, which tended to develop small

wavelength disturbances that grew in time. Since • and its first derivatives in arelength are used to calculate

l..:,_, these high wavenumber oscillations eventually contaminated all the variables and the calculations had

to be stopped. The calculations were found to be stable in time if the $'_ were eliminated from the evolution

equations for the shape. The damping constant, which results from the potential flow term -2(_20v,_/Om

did not correspond to that predicted from theory and, interestingly, was off by a factor of 2 for all axisym-

metric mode numbers. The instability arising in the vortical velocity potential • has been well documented

in previous work (see, for example [26]). The customary method of correction introduces a "smoothing"

parameter D into the problem, where the nodal values of • were replaced with

q_/= _i - D(_i-_ - 4_i-_ + 6_i - 4_i-_ + _i+2) (3.85)

after each time step. This process amounts to placing the negative of a fourth-order derivative with respect to

arclength on the right-hand side of the evolution equation for • and acts to smooth out the short wavelength

disturbances appearing in the variable.

Preliminary results proved that, with an appropriate choice of the parameter D, the process of smoothing

eliminated the instabilities. It was noticed, however, that with a slightly different smoothing algorithm

qli = k_i + D(q2i-2 + 16_i-1 - 30_i + 16q2i-1 - _i+2) , (3.86)
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Figure 3.4: Simulations of a weakly viscous drop in vacuum for a 2 = 0 (dashed line) and c_2 = 0.005 (solid

line) after the initial conditions ¢ = 0 and ix(0)] = R[1 + 0.01P2(cos0)] with N = 31, Nc = 15, and At =
0.001. The scale factor R in the initial shape ensures that the nondimensional equilibrium energy E_q is 4;r.

Also shown is the theoretical prediction for the damped shape in this limit Ztop(t) = 1 + [ztop(t = 0) - 1]e s_2t

(dotted line).

the size of the smoothing parameter D could be decreased by two orders of magnitude. This different

algorithm amounts to placing a second-order derivative with respect to arclength on the right-hand side

of the evolution equation for _. If the smoothing parameter was set too large, the damping constant was
less than the theoretical value. A smoothing parameter of D = 10 -4 was used to produce tile weakly

viscous simulations in Figure 3.4. With smoothing, the damping rate for the shape oscillations was in good

agreement with the theory. As in tile base potential flow calculation, the vohnne was found to deviate by
less than 10-s% from its initial value.

3.3.2 Case 2" "small" surfactant effects

This section considers the effects of bulk and surface viscosity and surfactant transport on the shape oscilla-

tions of a drop in vacuum when the nondimensional surface properties es, Ps, and ss are "small", or O((_:2).

These effects are to be included to leading-order in the numerics by expanding the total decomposition of

the boundary conditions in local coordinates to O(c_2), using the order-of-magnitude estimates from the

corresponding section in the theory, and neglecting those terms appearing at (2?(_ :_) and higher.

Order-of-magnitude analysis

With the velocity and pressure decomposed into potential and vortical fields, the nondimensional forms for

the normal stress balance, tangential stress balance, and kinematic boundary conditions in local coordinate

are, respectively,

P + P - 2_ \ on + -577U)= (c, + c_) - e;(C, + c_)(r - t)

+/x;(C, - C_)(m- + M-) + _*(C, +C_)(m + + M+), (3.87)
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[ ) )l .oFJ 2ko s -csv, + _(2, +_-c,_'; =-es_- s

*[
O (m- + M-) + - + M-) + _% + M +)

+m _ 7_(m J os '
(3.88)

and

dr _ Oz

dt Os (v,, + E,) (3.89)

dz Or

dt - Os(Vn + V,,), (3.90)

where

m+ = (Or, 1Or )\ Os -t- r O_ v_ + (Cs -t- C_)v'n (3.91)
n=O

(0Vs 1Or, )noM+ = \ as + r-_s I'_ + (c_ + c_)l,;, . (3.92)

The order-of-magnitude estimates for the potential and vortical flow fields and the surfactant concentra-

tion from the corresponding section in the theory yield expansions of the form

v = fl (U,zo + a2u,,'2) + g (u_o + a'2u_2) + O(a 3) (3.93)

P = Po + ct2p2 -[- O(O_3) (3.94)

V = fla2U,_2 +_(aUsa +a2Us_) +O(a 3) (3.95)

P = a2p'2 -I- O(a 3) (3.96)

F = 1 + Fo + aF1 + a2F2 + O(a 3), (3.97)

where, as before, the lower case fields (v,p) refer to those resembling potential flow and the upper-ca.se

fields (V, P) refer to those resembling vortical flow. Here the O(a) vortical pressure Pl has been introduced

to account for the nonlinear pressure not appearing in the linear analysis. The potential and vortical

fields depend on both n and s, but unlike the potential flow fields, which vary slowly in n and .s over a

nondimensional length scale of O(1), the vortical fields vary rapidly in n, decaying exponentially away from

the interface over a nondimensional length scale of O(a) and slowly in s. The normal derivatives of the

vortical fields are denoted by a scaled normal coordinate n _ aN. For instance, the normal derivative of

the O(1) tangential component of the vortical velocity

OU_o 10Uso

On a ON '
(3.98)

where OUso/ON is an O(1) quantity. The order-of-magnitude estimates for the surfactant concentration F

depend only on s and vary slowly over a nondimensional length scale O(1).
Substituting the order-of-magnitude scales (3.93) (3.97) into the boundary conditions (3.93) (3.97) and

expanding to O(32), noting that a normal derivative of a vortical field introduces a factor of I/a, yields

2°_'_°1 = (c_ + c_) - e;(C_ + C_)(ro - 1)
\

po+c_2 P2+P.,- On J

+,_( _ - c_)_o + <(c_+ c_)_0+ + o(_3) (3.99)

[ (auto ) 0U_l] = ,droa 2 2\ Os -C_u,o + ON J -% ds

, (Omo 2 _) Om+o+u_ \ os + - _ _ 'r _m° + * + O(a 3) (3.100)
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and

dr _ Oz

dt as [u.0 + c_2(u.z + U,c2)] + O(c_ 3) (3.101)

dz Or ,,
dt Os [u,m + a" (u,2 + U,_2)] + CO(c_3), (3.102)

where

[Ouso 1 Or ]m_ = L o8 + 7 oGus° + (G + G),+_o_ n=O ' (3.103)

If the O(a 2) terms are neglected in these equations, they simplify to those for tile base potential flow,

provided the unsteady Bernoulli equation is used to relate the pressure to the O(1) scalar velocity potential.
In order to incorporate the leading-order effects of bulk and surface viscosity and surfactant transport into

the boundary integral formulation, the quantities at O(a 2) must be determined. Of these, 'u,,2 and P2 may

again be absorbed into the base flow calculation and Ou,_o/On calculated fi'om Laplace's equation written
in local coordinates and evaluated at the interface. Note that apart from the e* terms all the quantities

associated with the surface properties are known from the potential flow and may be readily evaluated.

The unknown quantities still to be determined include the /:'2, OU_I/ON, and the two e_ terms. Of

these P2 and OU,1/ON may be found by introducing a vector velocity potential for the vortical velocity and

applying an order-of-magnitude analysis to the equations for the vortical fields to determine an evolution

equation for the vector velocity potential and an expression for the vortical pressure in terms of this vector

velocity potential both evaluated at the interface, as in the previous section.
For the surfactant concentration, an evolution equation may be found fi'om an order of magnitude analysis

of the decomposed surfactant transport equation. Inserting the scales into this equation gives, to leading-

order,

OF 0Fo
- + O(a) (3.104)

Ot Ot
OFo

(v + v) • %r = u,o_- s + C9(_) (3.105)

[Vs- (v + V)] F = m+(1 + Fo) + (.9(c_) (3.106)

V2F - 02Uo
Os 2 + CO(c_), (3.107)

0Fo _ m+(1 + ro) +
_ts0 "_8

or combining terms and rearranging,

0Fo

Ot

1 02Fo

Pes Os 2
+ O(c 0 (3.108)

Here the time derivative may be rewritten as

,, (3.109)

since the insoluble surfactant monolayer has no gradients in the normal direction.

Modified equations and boundary conditions

Dropping the order of magnitude estimates and reverting to the original notation in terms of v, V, q2, and

F yields the following modified boundary conditions for the base potential flow

1 2 20Vn

= -_(v,_- v_) - (G + G) - 2_ _ + _._,_ + P

-#:(Cs - C_)rn- - t;;(Cs + C_o)rn+ + e:(Cs + C_)(F - 1)

o¢ [Ov ]
= -v_ o--d- k Os + (2G + G)v_j • + On2

(3.110)

(3.111)
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where

dr

dt
dz

dt

1 0'2F OF

= -Pes Os 2 vs 8--s m+F (3.112)

Oz
- _ss (v,, + V,,) (3.113)

Or
- _s(V,_ + l.'_), (3.114)

12 Ov,, _ a2m+ (3.115)
On

1 (3.116)O_ _ Or tp
V,_ - Os + r Os

[(Ov,_ ) 1Or ]P = -v,_s + 2\ Os -C_Vs -r_sV,_] • (3.117)

,2o2¢ ( av,, ) . or01_---_ = --2a2 \ 08 --CsVs, --e s

+ [Ore- 20r ] Om+
+USL O,s +- J+ < asr &s m- (3.118)

rn i _ Ova 1 Or
Os -4- r O-_V_ + (Cs + C,o)vn. (3.119)

These equations are evaluated at the interface and retain all the leading-order bulk and surface viscous and

surfactant transport terms at O(a2).

The numerical procedure begins by initializing the r(s), z(s), 0(s), _(s), and F(s). After calculating

the arclengths, the kernels of tile boundary integral formulation are formed and used to calculate the base
potential flow velocity components. The potential flow velocity components are used to evaluate the right-

hand sides of the evolution equations for r, z, ¢, 9, and F, which are updated with tile Rung-Kutta time

stepping scheme.

The simulations including weak bulk viscous and surfactant effects were even more susceptible to the
kind of instabilities in the variable k_ seen in the previous case including weak bulk viscous effects. No

value of the smoothing parameter could be found for stable and physically realistic simulations including the

surface viscosities and Gibbs elasticity that were of the same order as the inverse of the Reynolds number.

For instance, with the Gibbs elasticity set to zero and both the surface viscosities nonzero, the smoothing

parameter had to be set so large that the resulting oscillations damped out at a rate smaller than the case
without surface viscosities.

There were two limits in which stable and physically realistic simulations could be obtained. These limits

set the Gibbs elasticity and one of the surface viscosities to zero. hi both example calculations the snloothing

parameter was increased to D = 7.5 x 10 -4. Figure 3.5 shows the case when the surface shear viscosity is

set to zero, but the surface dilatational viscosity is the same order as the inverse of the Reynolds number.

The damping constant for small oscillations was found to agree with the theory in that limit. Figure 3.6
shows the case when the surface dilatational viscosity is set to zero, but the surface shear viscosity is the

same order as the inverse of the Reynolds number. The damping constant for small oscillations was found

to agree with the theory in this limit. For the quadrupole mode, the shear viscosity was seen to have a nmch

larger effect on the damping of the shape oscillations.

3.3.3 Case 3: "medium" surfactant effects

This section considers the effects of bulk and surface viscosity and surfactant transport on the shape oscil-

lations of a drop in vacuum when the nondimensional surface properties %, #8, and _c, are "medium", or

O(a). These effects are to be included to leading-order in the numerics by expanding the total decomposition

of the boundary conditions in local coordinates to O(a), using the order-of-magnitude estimates from the

corresponding section in the theory, and neglecting those terms appearing at O(ct 2) and higher.
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Figure 3.5: Simulations of an initially perturbed weakly viscous drop in vacuum with small surfactant effects

for (c_2,e],#_*,_) = 0 (dashed line) and (c_2,_) = 0.005 with (e_,_;,#]) = 0 (solid line). The initial

conditions are (¢, _) = 0 and ix(0)l = R[1 + 0.01P2 (cos 0)] with N = 31, Nc = 15, and At = 0.001. The

scale factor R in the initial shape ensures that the nondimensional equilibrium energy E_q is 47r. Also shown

is the theoretical prediction for the damped shape in this limit Ztop(t) = 1 + [Ztop(t = 0) - lie -(5_2+_:)_

(dotted line).
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Figure 3.6: Simulations of an initially perturbed weakly viscous drop in vacuum with small surfact, am, effects
for 2 • • • •(a , es,#s , _s, Pes) = 0 (dashed line) and (a 2, #s) = 0.005 with (es, _*, Pes) = 0 (solid line). The initial

conditions are (_b, _) = 0 and Ix(0)l = R[1 + O.O1P2(cosO)] with N = 31, Nc = 15, and At = 0.001. The
scale factor R in the initial shape ensures that tile nondimensional equilibrium energy Eeq is 4rr. Also shown

is the theoretical prediction for the damped shape in this limit Ztop(t) = 1 + [Ztop(t = 0) - 1]e -(Sa2+12_':)t

(dotted line).
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Order-of-magnitudeanalysis

Thissectionappliesanorderof magnitudeanalysisto tilegeneralexpressionsfor thenormalandtangential
stressbalanceandkinematicboundaryconditions,theequationsfor thevorticalfieldsandthesurfactant
transportequation,writtenin localcoordinates.

Theorder-of-magnitudeestimatesforthepotentialandvorticalflowfieldsandthesurfactantconcentra-
tion,obtaintedfromthecorrespondingsectionin thetheory,aregivenby

v = fl(uTm + au,,l) + g(Us0 + au,l) + CO(a2) (3.120)

p = p0 +aPl + O(a 2) (3.121)

V = 1710:Vnl +§(Uso+a2Usl)+O(a 2) (3.122)

P = aPt + O(a 2) (3.123)

F = 1 + Fo +aFa + 0(0:2), (3.124)

where, as before, the lower case fields (v,p) refer to those resembling potential flow and the upper-case

fields (V, P) refer to those resembling vortical flow. Here the 0(0:) vortical pressure P1 has been introduced
to account for the nonlinear pressure not appearing in the linear analysis. The potential and vortical

fields depend on both n and s, but unlike the potential flow fields, which vary slowly in n and s over a

nondimensional length scale of (9(1), the vortical fields vary rapidly in n, decaying exponentially away from

the interface over a nondimensional length scale of O(a) and slowly in s. The normal derivatives of tile

vortical fields are denoted by" a scaled normal coordinate n + aN. For instance, the normal derivative of

the (9(1) tangential component of the vortical velocity

OUso 10U_o
- (3.125)

On a ON '

where OUso/ON is an O(1) quantity. The order-of-magnitude estimates for the surfactant concentration F

depend only on s and vary slowly over a nondimensional length scale C0(I).

Substituting the order-of-magnitude scales (3.120)-(3.124) into the boundary conditions (3.93) (3.97)

and expanding to C9(a'_), noting that a normal derivative of a vortical field introduces a factor of 1/a, yMds

po + 0:(p_ +/'1) = (C, + C_) - e_(C, + C_)r0

+#_(c_ - c,_)(,,_o + ao) + ,q(Cs + C_)(_ + + M+) + 0(_), (3.126)

OUsa _ dF0
a ON e** ds

+#; (too + Mo) + -__ (,,_0-+ Mo) + _ (m0+ + M +) + O(32), (3.127)

and

dr _ 0z

dt Os [unO "]- a(ttnl nt- gnl)] nt- 0(0:2) (3.128)

dz Or

dt - 08 [?/,nO nt- a(_nl -[- Vnl)] nt- (,-9(0:2) , (3.129)

where

[ Ouso 1 Or ] ,_=0mg= t Os + -Os us° + (Cs + c¢)un°r (3.130)

( OUso 1 Or \ n=0M°_ = \ Os 4- r-_sUso) . (3.131)

If the C0(a) terms are neglected in these equations, they simplify to those for the base potential flow, provided

the unsteady Bernoulli equation is used to relate the pressure to the (9(1) scalar velocity potential. In order to
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incorporatetheleading-ordereffectsofbulkandsurfaceviscosityandsurfactanttransportintotheboundary
integralformulation,thequantitiesat O(a 2) must be determined. Of these the Pl may again be absorbed
into the base flow calculation.

The unknown quantities still to be determined include the P1, P0, Oleo�ON, and tile two e] terms. Of

these P1 and Oleo�On may be found by introducing a vector velocity potential for the vortical velocity and

applying an order-of-magnitude analysis to the equations for the vortical fields to determine an evolution

equation for the vector velocity potential and an expression for the vortical pressure in terms of this vector

velocity potential both evaluated at the interface, as in the previous section. The Uso and its arclength

derivatives, however, cannot be determined using the techniques of previous sections. This is because the

tangential component of the vortical velocity is defined in terms of the normal derivative of the vector velocity

potential, which cannot be determined using any variable known only at the interface. Without the ability

to calculate the tangential component of the vortical velocity explicitly, the techniques used in the previous

cases may not be used to calculate the numerics for case 3.

Boulton-Stone [12] has developed alternate techniques to solve for the tangential velocity of the interface

explicitly, by generating a thin grid near the interface which remains locally orthogonal in the local coordinate

system, but this analysis is not attempted in this work.

3.3.4 Case 4: "large" surfactant effects

This section considers the effects of surface viscosity and surfactant transport on the shape oscillations of

a drop in vacuum when the nondimensional surface properties e_, #_, and a* are "large", or greater than

(9((_). The formulation for this case neglects all effects at (9((_) and smaller.
For this case the bulk viscous dissipation and the effects of the vortical fields may be neglected to leading

order. The flow field is calculated fl'om potential flow equations and the shape of the interface is updated

with the normal velocity from potential flow. Since the bulk viscous forces are neglected the tangential

component of the interface velocity, however, is different fi'om the tangential velocity from potential flow.

The governing equations are the regularized integral equations representing Laplace's equation for the

potential flow in the drop and the surfactant transport equation. These equations are subject, to the normal

and tangential components of the leading-order stress balance boundary conditions

p = (Cs +C_) -e_(C_ + C_)(F - 1)+ #*_(C_ -C_)M- + _;*(C_ + C_)M + (3.132)

e, 0r ,(aM-200___ ) OM + (3.133)0=- M- +< '

and the leading-order kinematic boundary condition

dr _ OZ[u,m -or- t2(ltnl 4- Unl)] 4- (9(OL 2) (3.134)
dt cos
dz Or

- Os[Uno+a(u,,l+U,_l)]+O(_'2),.. (3.135)dt

In the stress balance boundary conditions, and in the surfactant transport equation,

[(014 lOrv, _ ]M+ = [\ Os +rOs *] +(Cs+g_o)vn (3.136)

and is composed of the normal and tangential velocity components of the interface, where the normal interface

velocity is the normal component of the potential flow velocity evaluated at the interface.

The tangential stress balance equation may be written in the form of a second-order differential equation

for the unknown tangential interface velocity

02V*a(s)_g-s2(S ) + b(s) (s) + c(s)t_(s) = d(s) (3.137)

where a, b, c, and d are known functions from the potential flow and the shape. Since the tangential interface

velocity is necessarily and odd function in arclength for this axisymmetric problem, it may be expanded in
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atruncatedsineseries

I._(s)= E Ck sin (3.138)
k=l

where Nc is the number of coefficients limited by the Nyquist frequency. For discrete nodal values si, i =

1... N in arclength the tangential stress balance boundary condition may be written

Nc

E AikCk = di (3.139)
k=l

where

= [ci-ai 2] +bi(_) (3.140)Aik (_-) sin(_ _s/) cos(-_) .

If N > Arc this equation represents an over-determined system of equations for the coefficients of the tan-

gential interface velocity, and may be solved in a least-squares sense by multiplying each side of the equation

by the transpose of Ai_.. The tangential stress balance boundary condition becomes a matrix equation for

the coefficients of the tangential interface velocity.

The modified boundary conditions for this case are

D-[ _ = (v2-v2)-(C,+G)+e**(G +C_)(r-1)

-#s( s - C_)M- _*s(gs + C_)M + (3.141)

(Dr) 102r _Or-D--/ ,, - P_s _ l,,,_Ts - M+F (3.142)

dr Oz
dt Os vn (3.143)

dz Or

dt - OsV_ (3.144)

where the discrete form of the tangential stress balance boundary condition (3.140) is used to determine the

tangential velocity of the interface.
The numerical procedure begins by initializing the r(s), z(s), ¢(s), and F(s). After calculating the ar-

clengths, the kernels of the boundary integral formulation are formed and used to calculate the base potential
flow velocity components. Using the known interface shape and base potential flow velocity components and

the coefficients of the tangential velocity of the interface are found from. Finally, the right-hand sides of the

above evolution equations for r, z, ¢, _, and F are updated with the Rung-Kutta time stepping scheme.
Without the need to calculate the vector velocity potential for the vortical velocity contribution, the

simulations for this case suffered none of the numerical instabilities seen in the previous cases. The procedure

using the tangential stress balance to solve for the tangential velocity of the interface worked welt and allowed
for the combinations of surface viscous and Marangoni effects to be analyzed.

Figure 3.7 shows a calculation in the limit when the Gibbs elasticity and surface Peclet number are zero
with nonzero surface viscosities. Other simulations in this limit with CO(l) surface viscosities showed an

over-damped behavior.
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Figure 3.7: Simulations of an initially perturbed inviscid drop in vacuum with large surfactant effects for

(e_, n_, #_, Pes) = 0 (dashed line) and (n_, Iz:) = 0.05 with (e_, Pes) = 0 (solid line). The initial conditions

are (8, _) = 0 and Ix(0)t = R[1 + 0.01P.2(cos0)] with N = 31, Nc = 15, and At = 0.001. The scale factor

R in the initial shape ensures that the nondimensional equilibrium energy E_q is 47r. Also shown is the

theoretical prediction for the damped shape in this limit Ztop(t) = 1 + [Ztop(t = 0) - 1]e-b6,_:,:/(3,_;+2_,:)lt

(dotted line).
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Chapter 4

Summary and conclusions

In this research, the dynamics of a drop in a fluid medium with a surfactant contaminated interface are

analyzed. The fluids are modeled as Newtonian, and the insoluble surfactant monolayer is modeled as a

Boussinesq-Scriven Newtonian surface fluid. Using a linear relationship between the local surface tension
and surfactant concentration, an exact mechanical energy equation was derived for the system. The resulting

nondimensional total mechanical energy equation is

d{K.E. + P.E.} -a 2{Bulk Diss. }

-#_{Surf. Diss.}

+e:, {Marangoni}. (4.1)

The terms in (4.1) are clearly identifiable as volume and surface integrals over each phase. In particular,

the physical interpretation of the Marangoni term was shown to be a combination of energy storage and

dissipation terms whose dominant contributions are controlled by the surface Peclet number.

A novel analysis of the total mechanical energy equation was performed using an averaging method. This

method, when complemented with velocity field approximations found using matched asymptotic expansions,
allows for the construction of a damped harmonic oscillator equation that approximately describes the

dynamics of the system for small-amplitude shape oscillations. For the eases with surfactants this damped
harmonic oscillator equation was coupled to a second o.d.e, that describes the surfactant transport.

For inviscid potential flow and a clean interface, the dynamics of the system are approximately described

by the simple harmonic oscillator equation:

e(e- 1)(_ + 1)(e + 2)
ii_ + ae = 0. (4.2)

{(e + 1) + e_/p]

The nondimensional frequencies predicted by (4.2) are in agreement with the classical results of Lamb [23].

Adding viscosity to the system with a clean interface introduces damping. As shown in section 2.4.2

(Case 1), the shape oscillations of the viscous system are described by the equation

(1 + aAel)he + (aBtl + a2B_2)dt + f_oa_ = 0. (4.3)

Equation (4.3) differs from (4.2) in that it contains added mass and damping terms due to the bulk viscosity

in both phases. The frequencies and damping constants for this case are accurate to (9(a 3) and agree with

the results of Marston [28].
Even small surfactant effects lead to qualitative changes in the system. As shown in section 2.4.3 (Case

2), for a viscous drop in vacuum with weak O(a 2) surfactant effects the dynamics of the system are described

by a coupled set of equations:

ae + ae [_2(e - 1)(2g + 1) + _sg(g - 1)2 + p;(e - 1)(e + 1)(e + 2)]

+ _ [e(e - 1)(e + 2)] = -g_ [e;e(e - 1)], (4.4)
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e(e + 1)
ge + --ge = (g- 1)dr. (4.5)

Pes

In this case, the size of the surface Peclet number Pes controls the modification of the frequency and damping

constant.

The dynamics of the system becomes more complicated for slightly larger ("medium") surfactant effects.

Section 2.4.4 (Case 3) shows that when n_ and #s are O(a), a damped harmonic oscillator equation can be

found only when the Gibbs elasticity is zero. For the viscous drop ill vacuum, that equation is

{ v_eo g_ _--q2_)c_ (g+l) [ [C_212 _(2g+2g + c.c.)] }fie 1+ --+ 1)(Cooe-i_/4

+ a { v/-fiTo tCoo?

+#*(g- 1)(g + 1)(g + 2) [I + (Coo + c.c.) + [Cool 2]

+_:;g [(g- 1) 2 + (g- 1)(e + 1)(C00 + c.c.) + (g + 1)2tC0ol 2] }

%

+ {,e [e(g - 1)(g + 2)] = 0 (4.6)

The added mass and damping terms in this equation are relatively complicated functions of the Reynolds
number and surface viscosities.

More straightforward results are available when the surfactant effects are (.9(1) and completely dominate

the bulk viscous effects in the drop/medium system (Case 4). For that case, the following coupled system

of equations is obtained in section 2.4.5:

I 4t_;P*sg(g- 1)(g + 1)(e + 2) /
)

+ ag [e(e- 1)(g + 1)(g + 2)]

{ 2e;p;g(g- 1)(/+ 1)(g+ 2) (4.7)9e
%

9e + 9e PeT + [,qe(e + i) + .;(e - l)(e + 2)1

2#;(e- 1)(e + 2)

Supplementing the small-amplitude theory just summarized, a numerical boundary integral equation

formulation was developed for large-amplitude shape oscillations of a drop in vacuum. With an asymptotic

analysis of the weakly singular integrands in the regularized integral equations, a discrete fornmlation for
their solution was developed that only used the nodal values of the variables without special treatment near

the singularities. To accurately calculate the higher-order arclength derivatives in the formulation, a least-
squares spectral transform technique was used. The least-squares representation allowed for clean coding and

gave a continuous, smooth representation of the dependent variables. Such a representation was essential

in evaluating derivatives, integrals, and arclengths between unevenly-spaced nodes. It further provided an

efficient way of soh, ing for the tangential velocity of the interface when surface parameters were large. The

results for the base potential flow calculations were validated with excellent agreement with theory for small-

amplitude oscillations. With a second-order Runge-Kutta time-stepping scheme, example calculations for

small-amplitude oscillations in the quadrupole mode conserved the total energy and volume with errors of
less than 10-7%.

Using the order-of-magnitude estimates for the velocity components from the theory, the boundary in-

tegral equation formulation for potential flow was extended to approximately include the effects of bulk

viscosity, surface viscosity, and surfactant transport. These effects were approximated by including only the

dominant terms (in a) in the general viscous boundary conditions at a surfactant-laden interface. For the

case including bulk viscous effects with a clean interface, an instability was seen in the calculations. This

well-known numerical instability [26, 11, 44] could be controlled with a five-point smoothing algorithm. The

resulting calculations gave damping constants that were in excellent agreement with small-mnplitude theory,.
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Section3.3.2examinedbulkviscouseffectsandsmallsurfactanteffectsin thenumerics.In thiscase
thenumericalinstabilitywasmuchmoredifficultto control.Onlythelimit wheneitheroneof thesurface
viscositieswasnonzerocouldbecalculatedwith thesmoothingalgorithm.Thedampingconstantscalcu-
latedforeachlimit werein agreementwithsmall-amplitudetheory.Forsmall-amplitudeoscillationsin the
quadrupolemode,theadditionaldampingfromsurfaceshearviscosityalonewasanorderof magnitude
largerthanthatfromsurfacedilatationalviscosity.

Case3 includedbulkviscousandsurfactanteffectsassumingthesurfacepropertiesto be O(a). The

order-of-magnitude analysis for this case revealed that the tangential component of the vortical velocity was

needed explicitly in the modified boundary conditions. Since this quantity is not available in the boundary

integral formulation presented here, this case could not be treated.
When the surfaetant effects were large (Case 4), the vortical velocity contribution could be neglected

entirely by assuming that the tangential velocity of the interface was distinct from the underlying potential

flow. This tangential velocity could be calculated by integrating the second-order differential equation

that resulted from the tangential stress boundary condition. This second-order equation was solved by

representing the tangential velocity of the interface as a truncated sine series and solving for the coefficients

in a least-squares sense. Once the surface tangential velocity was known, the surfactant transport equation

could be used to update the surfactant concentration simultaneously with the remaining surface variables

and the drop shape. The resulting calculations for effects of surface viscosity were again found to agree with

small-amplitude theory.
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Appendix A

Surface theorems

Here the general forms for the Surface Reynolds Transport Theorem and Surface Divergence Theorem are

given. The reader is referred to [4, 16, 31] for their derivation.
The Surface Reynolds Transport Theorem for a material surface S,,_ is:

a2dS = -_ + Vs. (v(I)) dS. (A.1)
m m

where • is a scalar, vector, or tensor field.

Referring to Figure A.1, the surface Divergence Theorem for a material surface S,,_ and material line
element Cm is:

fs _Ts'(isn')dS = fc: rln'dl' (A.2)
m 1,1

where [] = ". ", " x ", or "(blank)".

S m

Figure A.I: A material surface Sm bounded by the material line Cm, where 7) and "_ are perpendicular to
the unit normal ft.
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Appendix B

Constants in matched asymptotics

Here the constants in the time-periodic uniformly valid velocity profiles and surfactant concentrations are

given explicitly for cases 1-3.

B.1 Case 1: "negligible"

The constants Coo and Coo are

Coo

Coo

surfactant effects

_ (2g + 1) v_ (B.1)
(g+l) (v/-fi-_+ v_)

_ (2e + 1) v_ (B2)
e (v_+ v_)

The constants Coa and C01 are given by the solution of tile sinmltaneous equations:

^

_-gCol - (g + 1)Col

^

/A_dO1 -[- (g-'b 1)Col

#

= _ ^' . ^ 1)'2Coo][_,2Coo-1- ('-_-

= -{_'[('+2)+Coo]-('+1)[('-1)-Coo]}

(B.3)

(B.4)

B.2 Case 2: "small" surfactant effects

The constants Col and Co2 are

-1 v_
Col - _o(1+i)

Co2 -
v_eo (1 + i)

The constants G, Cgl, and Ca2 are

-- _c: 1)]2(g- 1) + a2G+es _ (g - 1)(g + 2) + _)g(g +

col 2 esC_l m(e_l)(e+2)__e(_+l) .
a 2 Col a 2

[ g(g + 1) - if_0Pes ]G = e(e- 1)Pes [g_ i-):2 +_

(e+ 1)
C91 - (g -- 1) Col

Col
(f+l) v'_ (g+

Cg2 - (g- 1) Co2 (1 +i) 1)---_o

(B.5)

(B.6)

(B.7)

(B.S)

(B.9)
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B.3 Case 3: "medium" surfactant effects

The constant Coo is

where

nl + n2e iTr/2 (B.10)
Coo = dl + d2e i7r/4 -1-d3 eirr/2 '

nl = -e_Pesg2(g - 1)(g+ 1) _ _g(g_ 1) - #:(g - 1)(g+ 2) (B.11)
2 2

g2(g + 1)2 + fleop %

e] fteoPe2_g(g- 1) (B.12)
_'/2 ----

ge(g + 1) 2 + _oPe_

dl = e;Pe_g2(g + 1)2 + a:g(g + 1) + p*(g- 1)(e + 2) (B.13)
2 2

g2(g + 1)_ + _eoPes

d2 = aX/_o (8.14)

d3 = e_f_eoPe_g(g + 1) (B.15)
2 2 "

g2(f q_ 1)2 + f_goPe,

The constant G is

[ _(e+ 1)- ia_oPe_]a = e(e- X)PesLe_5?-;i-)___. (B._6)

The constants Coi and C91 take similar but more complicated forms and are not written explicitly here.

They are not needed in the leading-order analysis of the energy equation for Case 3.
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Appendix C

Local coordinate system

x(s,_) = ar(_)r(s) +azz(_) (C.1)

a(_,_) = ar(_)r'(_)+a_z'(s) (C.2)

/_(_,_) = -_,,(_)z'(s) + _r'(s) (C.3)

In local coordinates (n, s, c2), the unit tensor, the gradient, operator and their projections onto the interface

are given by
I = tiff + gg + 6_6_,

la=I-fifi=gg+6_,

o o oV = fi h,_ + g ha-_s + 6_ h_ o _

0 0

(c.4)

(c.5)

(c.6)

(c.7)

where hn, h_, and h_, are metric coefficients that are functions of n, s, and _ in general. For points at a

constant meridian angle (F = constant) and on the interface (n = 0), the metrical coefficients and their

derivatives are given by
1

hn = 1 ha = 1 h¢ = -
r

Ohn _0 Oh_ _ Ca Oh_ _ z'
On On On 7,2

Ohn _ 0 Oh_ _ 0 Oh_ _ r'
Os Os Os r2

Oh_ _0 Oha _0 Oh_ _0
O_ O_ O_

Ofi_O --0_ _-0 06_ _0
On On On

Off _Ca O_ fiCa 06_ _0
Os Os Os

Off_ ^ , O_ _ , 06_ fi z' _ r'
O_ e_z O_ ecr O_

(c.8)

where Ca = z_r" - r'z" is the curvature in the g direction, and primes denote differentiation with respect to

S.
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Appendix D

Explicit kernels in numerics

Here the forms of the kernels and their asymptotic behavior as s + si are given explicitly' in terms of the

axisymmetric arclength paraineterization (at constant _o) x(s) = _r(s) + {_:z(s), where ds 2 = dx - dx. The

kernels in the regularized double-layer potential boundary integral representation (3.8) and relation (3.9)

take the parameterized forms

n(_). vo(_, _) _(,) =

r(s){[z(si) - z(s)lr'(s) + [r(si) + r(s)lz'(s)} [ E(m) ]

z,(8) [ S(m) ]d-27r{[r(si) --_ r(8)] 2 J-[z(si) -- z(8)]2} 1/2 (I_-- L,) Ik'(lll) ,
(D.1)

where

_. [_,(8) x vc(_,, 8) r(8)] =

r(_){[z(sd - z(s)]z'(_) -k(,i)+ r(8)]r'(_)} [ E(m) ]
_)- + r(T_ + [z(s-T)- zTsT]_}TT_ L(1- m)]

{[z(<)- z(8)]z'(s)-,-(_>'(.,)} [ _EC,,,)
2_r(s,_,5 +_+_(TT) U z-_s)]2}'/2 [(1 - m) t((m)] , (D.2)

4r(si)r(s) (D.3)
m = m(_, _) = [_(8,) + r(8)]_ + [_(_) - z(8)]_

and primes (t) denote differentiation with respect to arclength s. K(m) and E(m) are, respectively, the

complete elliptic integrals of the first and second kind. Accurate asymptotic expressions for K(m) and E(m)

may be found in [1].

As s --+ si the above kernels have the asymptotic behaviors

,_(s) •vc(,,, _) r(_) ~

4_ L4-v_(--_)J + C.(sd - d_(s_) + O(s - s_),
(D.4)

_. [_,(_) x vc(_, _) _(_)] ~

1 { 1 1 r'(8i)[(8--si)]}+([)(8_8i) '2rr (s £ si) + 2 r(si_--f log L4v_r(si)J

where £,(s) = z'(s)r"(s) - r'(s)z"(s) and d_0(s) = -z'(s)/r(s).

(m.5)
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